AGVISE Laboratories Established 1976

John Lee: Soil Scientist

Tissue and Soil Testing "Together" Help Make Better Decisions

What is Plant Analysis

- "Snap Shot" in the life of a plant
- A report on the Nutrient uptake by the Crop to that day
- Does not "Look Forward" very far
- Tool to use with "Soil Testing"

Using Plant Analysis as a Tool

- Diagnosing visible nutrient symptoms

 Nitrogen vs. sulfur
- Evaluating fertilizer placement – With or without starter
- Detecting hidden hunger
 Something just doesn't look right
- Monitor spoon feeding nutrients

 Nitrogen (irrigated potatoes)

Collecting Plant Samples

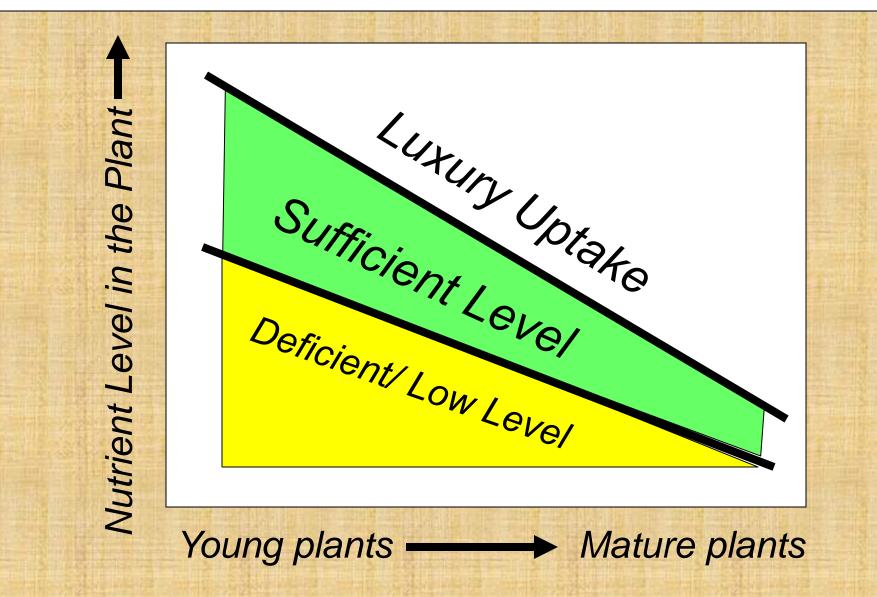
- What part of the plant
 - It is critical to collect the right plant part. The interpretation is based on that part.
- When
 - Various "Stages" for best interpretation
 - Within 1 week if comparing "good" and "bad"
- Care of the sample
 - Brush any dust off the sample
 - Iron and manganese contamination from soil
 - Ship samples immediately or keep cool

Specific Plant Part needs to be Collected for "Each Growth Stage"

• Early Season

- In most cases the entire above ground plant
- (I.e. wheat at tillering, corn <12")
- Mid and Late season
 - In most cases the most recently mature leaf (i.e. Leaf opposite corn ear)
- Make sure you get enough plant material (95% water)
- Plant Sampling Guide & Interpreting a Plant Analysis Report (www.agvise.com)

Interpreting Plant Nutrient Analysis


- Sufficiency Range Research
 - University research has determined the sufficient level of each nutrient for many crops. The sufficient range is based on a specific plant part and stage of growth
- University Research is from 60's,70's ,80's
- "Tissue Sufficiency Range Research" is limited and old for many crops
- Crop yields are much higher now!

Sufficiency Range Interpretation

Sufficiency Range Interpretation

Tissue - Sufficient Nutrient Range vs. Stage of Growth

Crop Stage	Phosphorus	Potassium		
Corn 2-12"	.348%	2.9-5.0%		
Corn 12-20"	.245%	2.4-3.5%		
Corn - tasseling	.245%	1.7-2.8%		

Expect nutrient levels in plant tissue to decrease through the season but stay in the "Sufficient Range!

"Plant & Soil Testing" "Best of Both Worlds"

- Good and Bad tissue samples
- Good and Bad soil samples
- Current growing conditions("Stresses")
- Information soil moisture, fertilizer rate, placement and timing, other factors like rotation

Objectives of 2012 Corn Tissue Sampling Project Demonstration

- Show tissue nutrient concentrations decline through the season in high yield situation.
- Determine if nutrients applied to L, M, H phosphorus and potassium sites kept tissue nutrient levels in sufficient range through season.
- Get an idea if tissue sufficiency ranges being used are appropriate.

Corn Tissue Sampling Demo 2012

Cooperator: Chris Goulet, Brent Huebner Morris, MN

- 1) Two Irrigated Fields
- 2) Corn-on-corn 5 yrs,
- 3) 3 Sampling points in each field
- 4) Grid Soil Samples from 2011
- 5) Corn Leaf tissue samples collected in 2012 (13 samples)
 - a) V5 V8: June 6, 8, 11, 13, 15, 17, 19, 21
 - b) VT : July 9, 11, 13, 15, 17
- 6) VR P & K Fertilizer applied with strip tillage prior to planting

Grid Soil Test Data (Fall 2011) One Low, Medium, High (P & K) Grid From Each Field

		Field A		Field B			
	Low	Medium	High	Low	Medium	High	
P ppm	6 (Olsen)	10 (Bray1)	30 (Bray1)	5 (Olsen)	10 (Olsen)	40 (Bray1)	
K ppm	103	117	198	114	124	198	
Zn ppm	1.64	1.2	3	1	1.9	2	
S lb/a	20	22	22				
B ppm	0.3	0.3	0.4				
рН	7.5	7.1	6.8	7.5	7.2	6.6	
OM %	2.2	2.1	3.7	3.7	5.1	6.2	

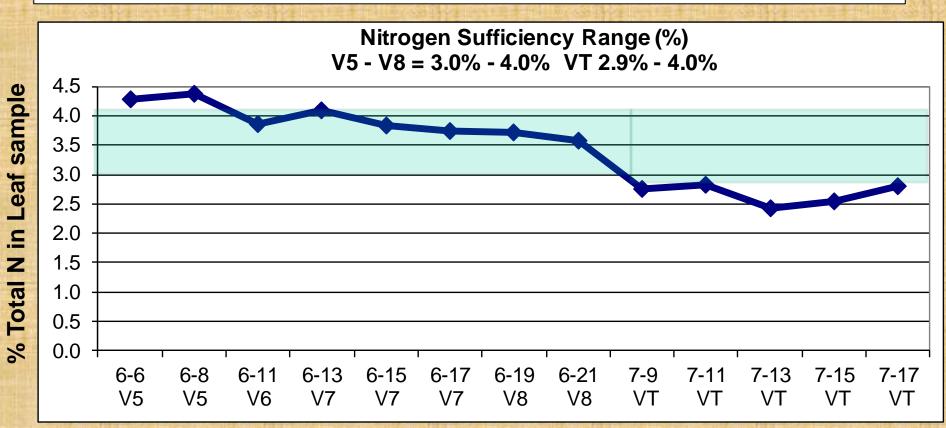
*Soil Sampled prior to VRT application Field A in Fall 2010 Field B in Fall 2011 Planted: Spring 2012

Field Images – Morris, MN

-	1	ŝ	1,5	22	29	36	43	50
İ	2	ġ	16	23	30	37	44	51
	3	10	17	24	31	38	45	52
	4	11	18	25	32	39	46	53
	5	12	19	26	33	40	47	54
	Ģ	13	20	27	34	41	48	55
	-7	14	21	28	35	42	49	56

Yield 200 – 220 bu/a Field A

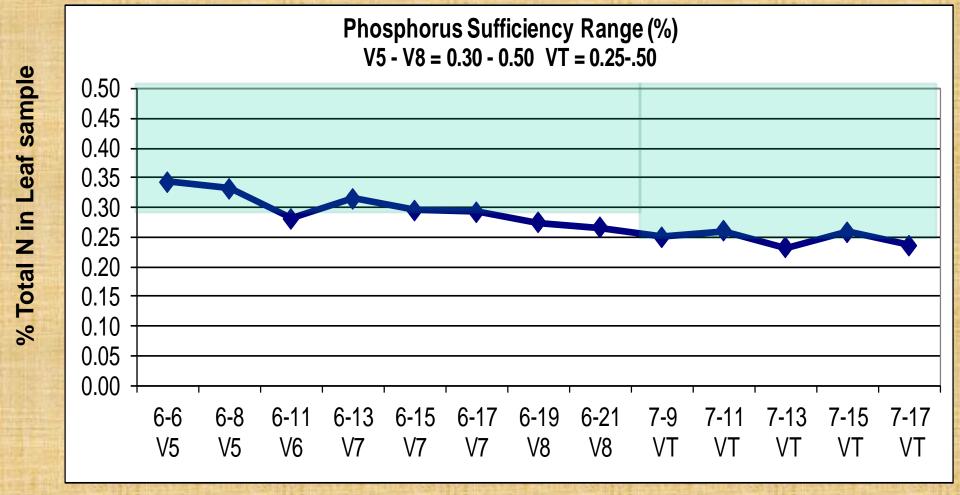
Yield 200 – 220 bu/a Field B



Fertilizer Applied 2012

	The second se	And a state of the	There is a second se	A REAL PROPERTY AND ADDRESS OF THE OWNER.	the second se		
	Fertilizer Applied						
	Field A			Field B			
	Low	Med	High	Low	Med	High	
N (Planting Strip-Till)	69	77	69	80	76	65	
N (Sidedress UAN early June)	77	76	86	104	109	122	
N (Pivot UAN end of July)	35	35	35	35	35	35	
Total N Applied	181	188	190	219	220	222	
P ₂ O ₅ (Planting Strip-Till)	71	76	23	94	68	0	
K ₂ O (Planting Strip-Till)	42	40	26	58	56	45	
Zn (Planting Strip-Till) 9% chelate	2 pt	2 pt	2 pt	3 pt	3 pt	3 pt	

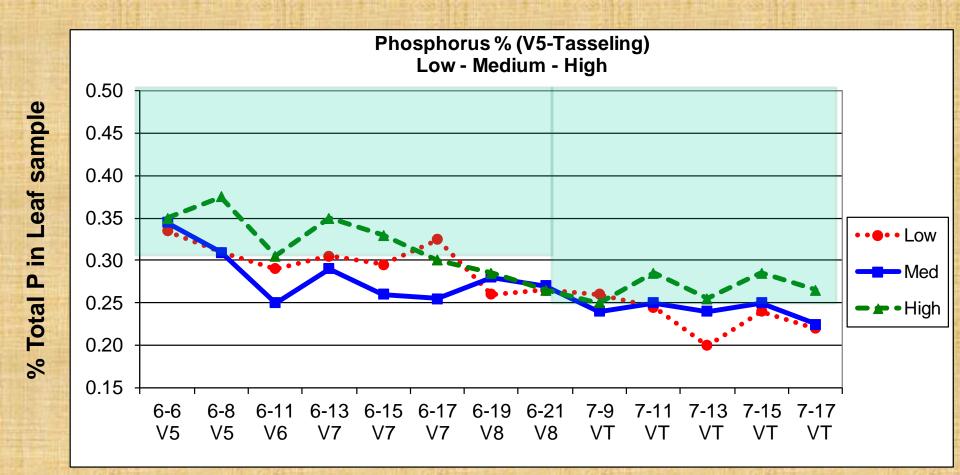
Nitrogen Tissue Test Results - Stage of Growth



Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

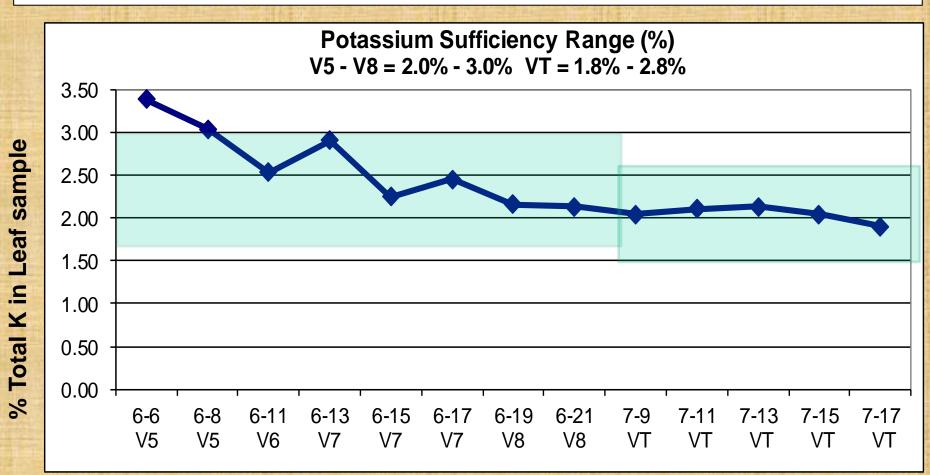
Phosphorus Tissue Test Results – Sampling Stage of Growth



Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

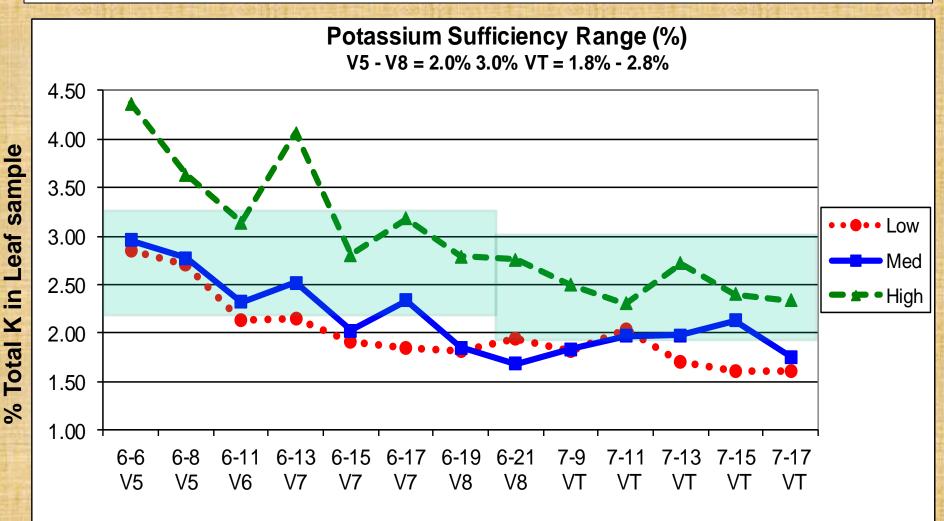
Phosphorus Tissue Test Results – Growth Stage



Corn Growth Stage

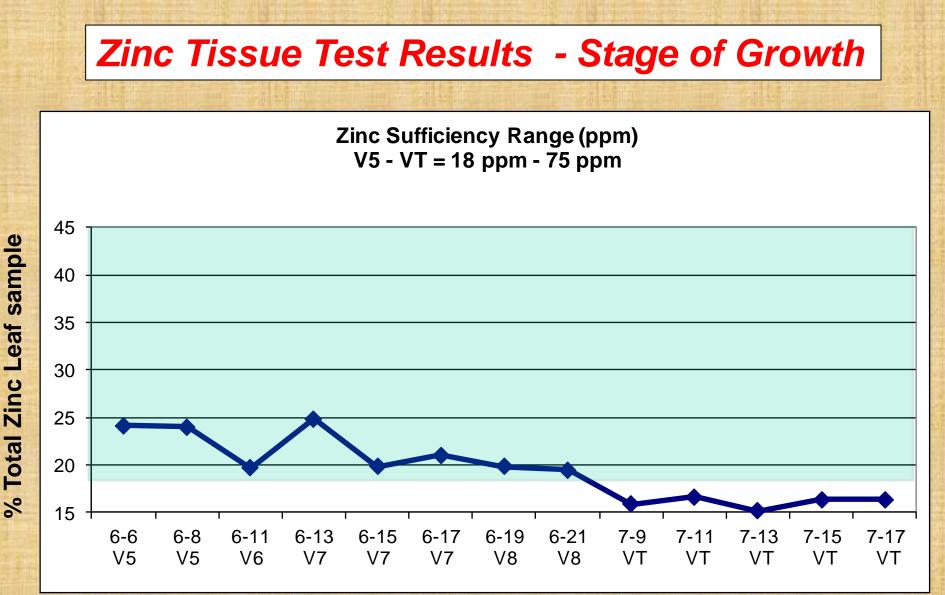
Average P Tissue level of low, medium and high sites from both fields.

Potassium Tissue Test Results - Stage of Growth



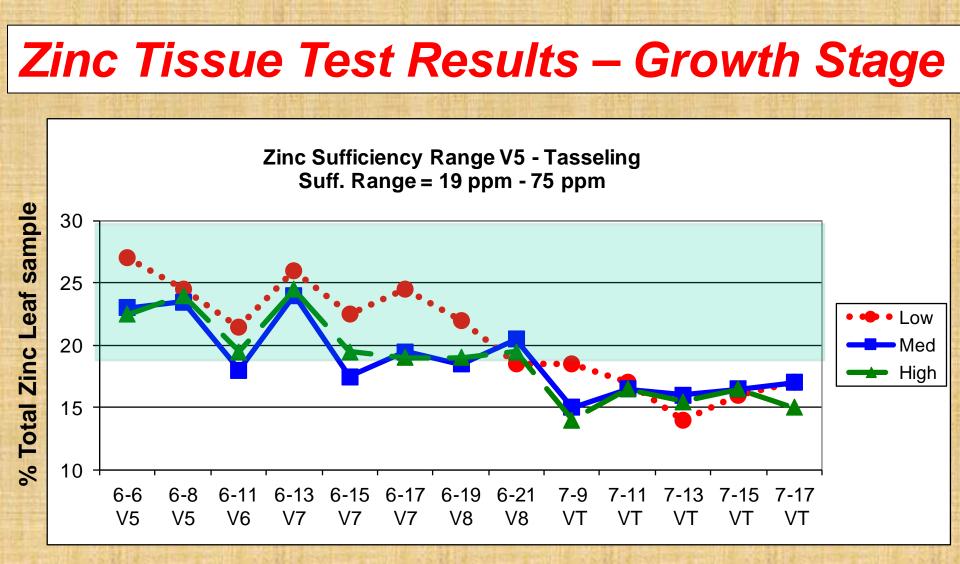
Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.


Potassium Tissue Test Results - Stage of Growth

Corn Growth Stage

Average of low, medium and high sites from both fields.



Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

Corn Growth Stage

Average of low, medium and high sites from both fields.

All sites soil zinc >1.0 ppm 2-3 pints Zinc Chelate with starter

Irrigated Corn Tissue and Soil Test Demo

- Tissue Nutrient levels Declined slowly through the season as expected
- Tissue nutrient levels for P went below the sufficiency range even with recommended fertilizer applications (higher rates Needed?)
- Zinc tissue levels were below sufficiency range, for all sites in July, even with high soil Zn and zinc fertilizer applied?
- Additional university research is needed to reaffirm Zinc tissue nutrient sufficiency range.

Winter Wheat – Tissue Demo

- Prevent Plant field 2011 Northwood ND
- Winter wheat seeded late
- Start fertilizer only at seeding

Objectives of Winter Wheat – Tissue Demo

- Determine if tissue and soil testing could distinguished between fertilized and unfertilized treatments
- Determine if N topdressed in April was going to be enough for good yield and protein
- Help grower make decision about additional N application

October 31, 2011 Soil N - 15 lb/a 0-24"

Winter Wheat Tissue Example 2012

May10, 2012

Green Wheat

N applied April 26 240 lb Urea with Agrotain (108 actual N) No decent rain 14 day Few showers, heavy dews

Yellow Wheat No- N applied

Winter Wheat - Tissue and Soil Demo 2012 Good and Bad <u>Tissue Samples</u>

Tissue samples - May10, 2012

Green Wheat

Tillering Stage - Whole above ground plant sample Tissue Total N - 3.4% (3.8- 5.5% is sufficient)

Yellow Wheat

Tillering Stage - Whole above ground Plant sample Tissue Total N - 2.2% (3.8- 5.5% is sufficient)

Winter Wheat Tissue and Soil Demo 2012 Good and Bad Soil Samples

Green Wheat

Soil Nitrate Ammonium N Total Soil N 9 lb/a 20 lb/a 29 lb/a (0-6")

Yellow Wheat

Soil Nitrate Ammonium N Total Soil N 1 lb/a 7 lb/a 8 lb/a (0-6")

Winter Wheat Tissue and Soil Demo 2012 Good and Bad Tissue Samples, Good and Bad Soil Samples

Green Wheat

Tillering Stage - Whole above ground plant sampleTissue Total N - 3.4% (3.8- 5.5% is sufficient)Soil Nitrate9 lb/aAmmonium N20 lb/aTotal Soil N29 lb/a (0-6")

Yellow Wheat

Tillering Stage - Whole above ground Plant sampleTissue Total N - 2.2% (3.8- 5.5% is sufficient)Soil Nitrate1 lb/aAmmonium N7 lb/aTotal Soil N8 lb/a (0-6")

Winter Wheat Tissue Example 2012 Good and Bad Tissue Samples, Good and Bad Soil Samples

Green Wheat

May 21 (More N applied) 75 lb Urea (35 lb/a Actual N) No Agrotain ½" Rain the next day Yield 55 bu Protein 14.6%

Yellow Wheat No- N applied 20 bu yield estimate (small area) Protein 10.7%

Winter Wheat Tissue and Soil Test Demo

- Tissue and soil tests confirmed N was low in "check" area
- Tissue and soil tests showed fertilized area was marginal in N
- Grower applied additional N timed with forecast rainfall event.
- Two N fertilizer applications made large difference in % protein and yield
- Protecting the Urea with Agrotain was a good decision, but protection only lasts about 10 days.

Corn Tissue and Soil Test Demonstration - Starter

Corn Tissue and Soil Test Demonstration - Starter

- Objectives
 - Determine if soil and tissue testing could determine if starter fertilizer had been applied
 - Show soil sampling technique that can be used to trouble shoot problems with starter equip

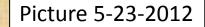
Plant size without and with starter

Starter – 5 gallons 10-34-0 with 2 pints of zinc chelate

With Starter - 12"

No Starter

Tissue Total N – 4.1% (3.5-5.0 is sufficient) Tissue Total P - .48% (.35-.80 is sufficient) Tissue Total Zn – 25 ppm (20-75 is sufficient) With Starter (5 gallon 10-34-0 - 2pt Zn) Tissue Total N – 5.6% (3.5-5.0 is sufficient) Tissue Total P - .83% (.35-.80 is sufficient) Tissue Total Zn – 56 ppm (20-75 is sufficient)


Tissue Test Results

Picture 5-23-2012

No Starter

Soil nitrate in row – 16 lb/a (0-6" sample) P Soil test in row – 15 ppm Zn Soil test in row – 1.6 ppm With Starter (5 gallon 10-34-0 - 2pt Zn) Soil nitrate in row – 102 lb/a (0-6" sample) P Soil test in row – 68 ppm Zn Soil test in row – 5.9 ppm

Soil Test – Soil Probes right in row

No Starter

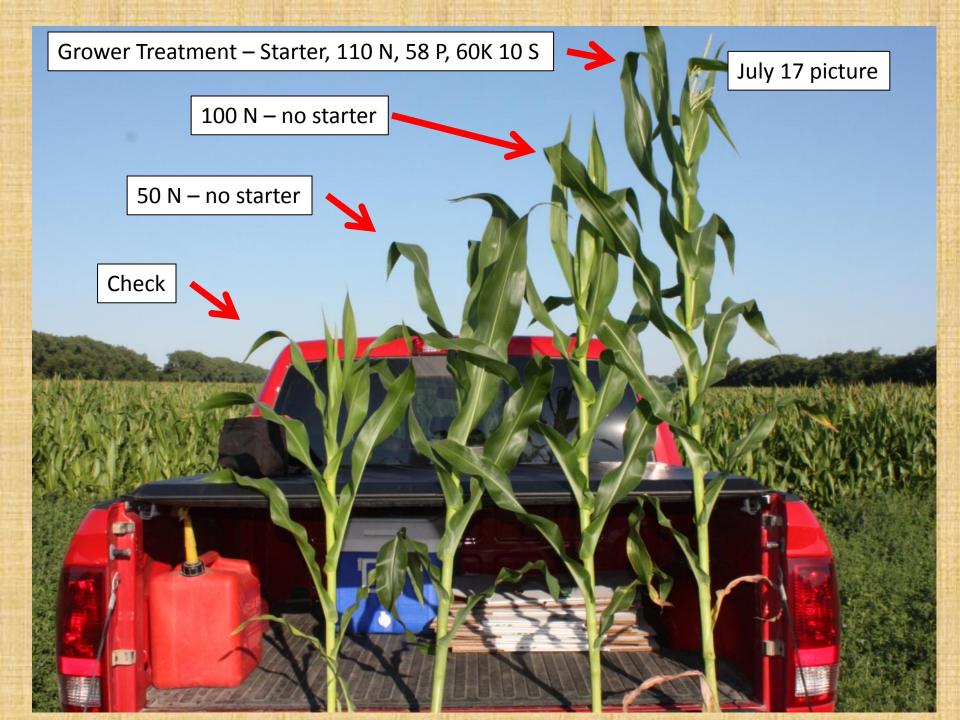
Tissue Total N – 4.1% (3.5-5.0 is sufficient) Soil nitrate in row – 16 lb/a (0-6" sample) Tissue Total P - .48% (.35-.80 is sufficient) P Soil test in row – 15 ppm Tissue Total Zn – 25 ppm (20-75 is sufficient) Zn Soil test in row – 1.6 ppm With Starter (5 gallon 10-34-0 - 2pt Zn) Tissue Total N – 5.6% (3.5-5.0 is sufficient) Soil nitrate in row – 102 lb/a (0-6" sample) Tissue Total P - .83% (.35-.80 is sufficient) P Soil test in row – 68 ppm Tissue Total Zn – 56 ppm (20-75 is sufficient) Zn Soil test in row – 5.9 ppm

Tissue Plus Soil Test Helps Make better Decisions

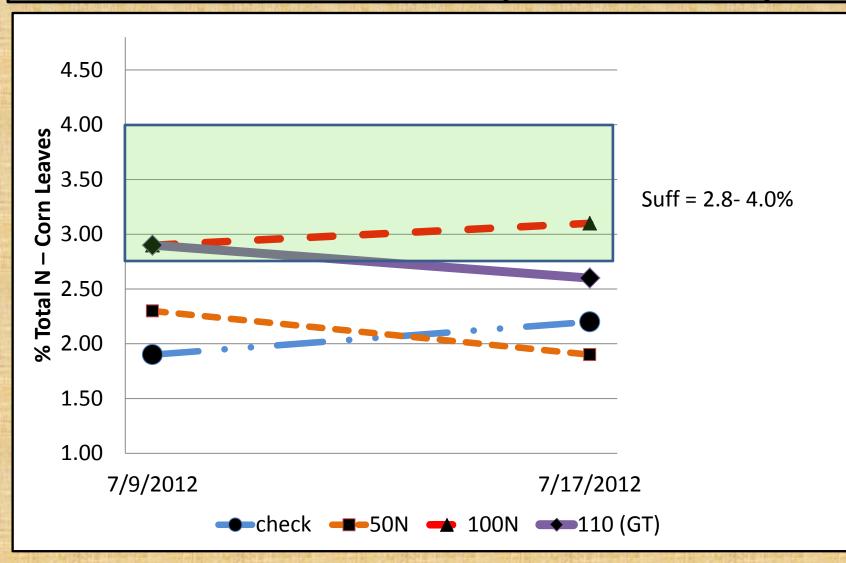
- Tissue and soil tests showed difference between "short" and "tall" corn
- Tissue levels were in sufficiency range for short and tall plants
- Soil test confirmed lack of starter was the difference
- Starter stimulated early growth and may lead to yield advantage in shorter season (up north)

Corn – Tissue and Soil Test Nitrogen Demonstration

- Determine if tissue and soil tests during the season could distinguish N treatments during the season
- Determine if tissue and soil tests at the end of the season could distinguish the N treatments
- Help grower decide if his N rates are sufficient.


Corn – Tissue and Soil Test Nitrogen Demonstration

- Soil Test Levels
- Previous crop soybeans
- N 25 lb/a
- P 12 ppm (Olsen P)
- K 100 ppm
- S 30 lb/a
- Zn .9 ppm
- OM 1.5%
- pH 6.2


Corn – Nitrogen Demo

- Check area (no starter no broadcast N,P,K,)
- N Top-dressed at 6" corn (AMS) 1" rain that evening - 50 and 100 lb/a actual N (about May 25)
- Grower Treatment (5 gallon 10-34-0 starter plus Zn)
 - 110 N
 - 59 P₂O₅
 - $-60 K_2 0$
 - 10 S
 - .5 Zn

Corn N – Tissue Tests Check, 50, 100, 110 (Grower Rate)

N Deficiency showing on lower leaves, even on high N treatment

Corn Stalk Nitrate and Soil N Test at the end of the season (September 26)

Treatment	Corn Stalk Nitrate ppm	Fall Soil Nitrate 0-24" lb/a
Check	35 ppm	5 lb/a
50 lb/a N topdressed	185 ppm	8 lb/a
100 lb/a N topdressed	162 ppm	8 lb/a
Grower trt – 110 lb/a N pre-plant incorporated	188 ppm	24 lb/a

Corn Stalk Nitrate Interpretation

Low: (Less than 250 ppm) Likely that N deficiency limited yield Marginal: (250-700) Possible that N deficiency limited yield Optimal: (700-2000) Yield was not limited by N Excessive: (>2000 ppm) Nitrogen supply was excessive

Corn – Tissue and Soil Test N Demonstration

- Tissue test in season identified N treatment differences.
- End of season corn stalk nitrate test and 24" soil test confirmed N was limiting (even with grower rate!).
- Grower may need to increase N rate for corn (140 bu/a corn could have been higher?)

Sugarbeet – Soil and Tissue Demo

- Determine if tissue and soil tests could determine if nutrients were causing yellow beets on sandy ridges
- Follow with tissue and soil tests after inseason fertilizer application to confirm nutrient uptake by crop

North Star Ag Service Scott Edgar Sugarbeet – Soil and Tissue Demonstration Mid June - Sandy ridges yellowing off Warren, MN

North Star Ag Service Scott Edgar

Sugarbeet Soil Analysis June 20, 2012

Site Appearance	Sulfur 0-6"	Sulfur 6-24"	Chloride 0-6"	Chloride 6-24"	
	lb/a	lb/a	lb/a	lb/a	
Yellow	8	24	4	8	
Green	108	240+	22	104	

Sulfur Sufficiency Range: 15 lb/a topsoil?

Chloride Sufficiency Range: 40 lb for wheat?

Soil nitrate for good and bad >80 lb/a 0-24"

<u>Tissue</u> Analysis - June 27

Site	Sulfur	Chloride		
Yellow	.14%	.22%		
Green	.23%	.87%		

Sulfur Sufficiency Range: .25% to .50%

Chloride Sufficiency Range: Sugarbeets?

All other nutrients in sufficiency range

Sugarbeet <u>Tissue</u> Analysis After Fertilizer Trial Strips (July 11)

Treatment	Sulfur	Chloride	
Yellow (check)	.13%	.13%	
Green (adjacent good)	.28%	.41%	
Potassium Chloride – 50 lb/a	.17%	.42%	
AMS - 50 lb/a	.50%	.47%	
Potassium Chloride – 50 lb			

Sugarbeet – Soil and Tissue Demo

- Tissue and soil tests showed differences between yellow and green beets
- Tissue tests 10 days after fertilizer application (1" rain) showed nutrient uptake
- Additional research planned for sulfur and chloride on sugarbeets?

Corn – Soil and Tissue Demonstration Purple and Stunted plants

- Use tissue and soil tests to determine reason for purple corn.
- Determine if tissue test after fertilizer application would show plant nutrient uptake.

Greg Reidman Riverbend Agronomy

Corn – Soil and Tissue Demonstration Purple and Stunted plants

Greg Reidman Riverbend Agronomy

Corn – Purple and Stunted

Previous crop was Sugarbeets

Starter was low rate with low %P fertilizer

06/12/2012 13:45

- Soil Test May 24
 - P 21 ppm (VH)
 - K 241 ppm
 - S 16 lb
 - -OM 4.0%

- pH 7.7

Sugarbeets don't support Mycorrhizae (Fallow syndrome)

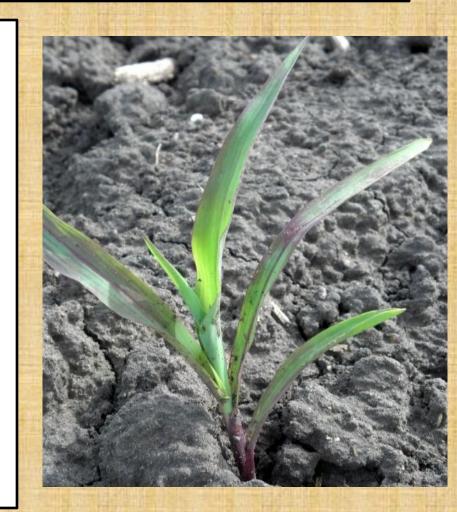
- Fungus helps plant take up nutrients like P & Zn
- Previous crop of sugarbeets, canola, fallow don't support mycorrhizae and fungus population decreases

Tissue Analysis - May 24

- Phosphorus very low in tissue
 - .17% Sufficiency range is .35% to .8%
 - P soil test 21 ppm (very high)

Rescue in season?

- 6 gallon 9-24-3 applied
 - placed near row with single disc
- 4 gallon 10-34-0 + Zn
 Foliar application



P Def. - Rescue in season?

Tissue Test 2 weeks trt

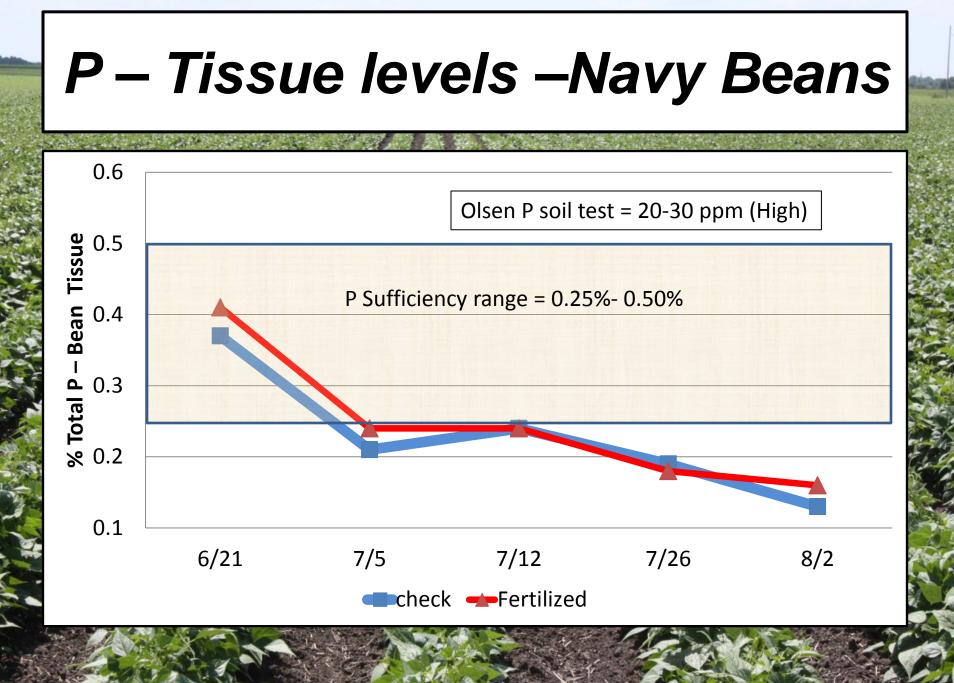
Check - .24% P Treated - .22% P (Sufficiency Range is .35% - .80%)

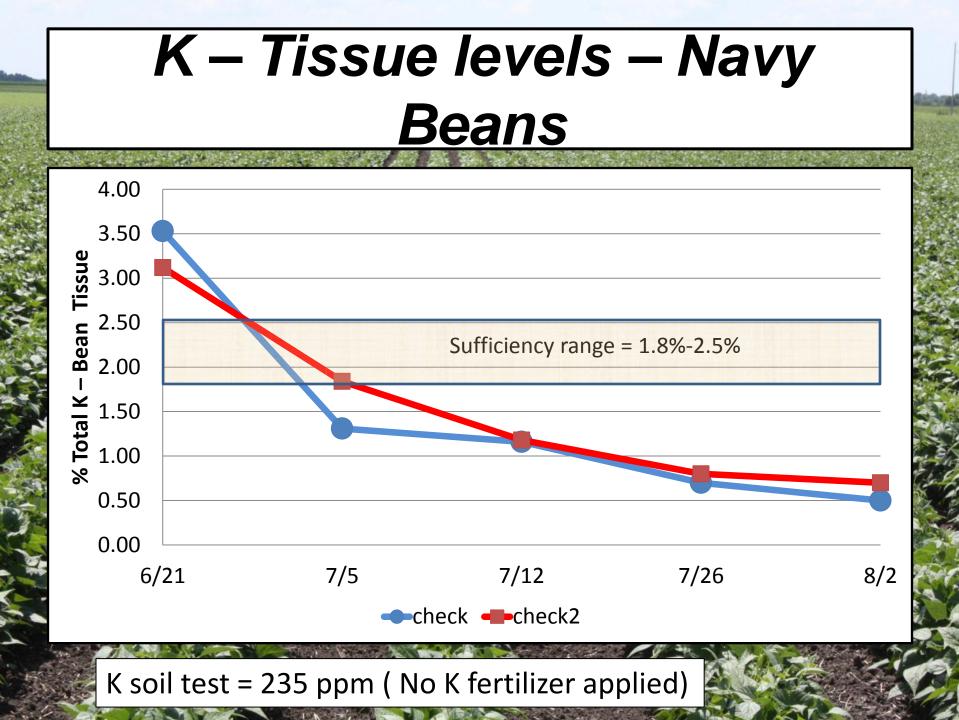
- No difference in growth
- No difference in tissue P
- Yield loss estimated at 40 bu/a

Corn – Tissue and Soil Test Demo – Purple Corn

- Tissue Test indicated low P was issue
- Soil Test was high in P
- Previous Crop of Sugarbeets pointed towards "Fallow Syndrome"
- Low rate of low %P starter (too little)
- Rescue Treatment did not show up in tissue analysis or in observed growth
- Grower needs "Strong Starter P" program for corn following sugarbeets or do not plant corn after beets

Navy Bean Tissue and Soil Test Demonstration


Navy Bean – Tissue and Soil Test Demonstration

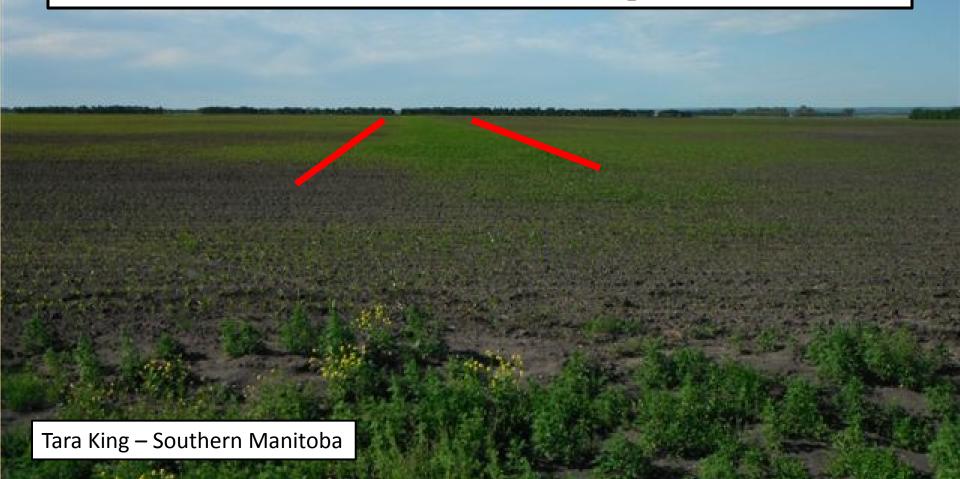

- Use tissue and soil testing to distinguish fertilizer and unfertilized treatments
- Determine if tissue nutrient levels stayed in the sufficient range through the season.
- Do some scouting for Bow Season!

Navy Bean – Soil Test – July 17 Demonstration - Hatton ND

Treatment	N 0-6"	Ρ	K	S 0-6"	Zn	OM
		(Olsen)				
	Lb/a	ppm	ppm	lb/a	ppm	%
check	10	30	235	6	2.6	2.6
Fertilized	24	24	227	14	2.4	2.8

20-31-0-15 preplant broadcast and tilled

Navy Bean Tissue and Soil Test Demonstration


- Tissue levels for P & K dropped off once topsoil got dry
- Soil test showed both P and K levels were high
- Tissue tests from fertilized and unfertilized area showed uptake issues once topsoil got dry (no difference in P treated or untreated)
- As crop approached maturity we expect most nutrient levels to decline, but not this early!

Tissue & Soil Testing Together Provide Better Information

- Tissue testing alone may indicate nutrients are low, while a soil test shows the nutrient level to be high. You need info on rotation, soil conditions, fertilizer, placement, timing and other stresses!
- Having both tissue and soil tests (Good" & "Bad") is critical when trouble shooting problem areas!
- Tissue and soil samples together provide best information for making decisions

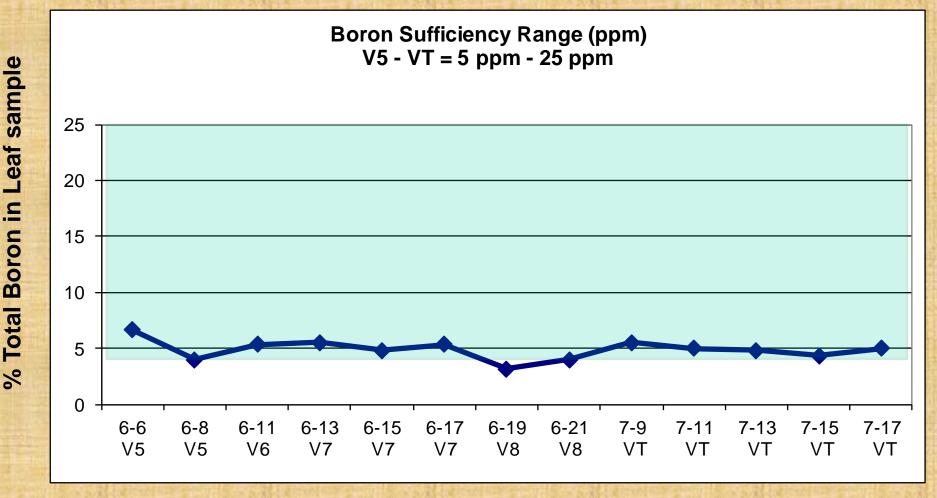
Corn – Soil and Plant demo Purple corn field with one "Green" strip

Corn – Soil and Tissue Demonstration Purple and Stunted plants

- Previous Crop canola
- No starter fertilizer with seed
- Fallow syndrome suspected

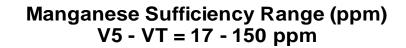
Fallow syndrome is a situation where a beneficial fungus called Mycorrhizia die because there are no host plant roots to grow on. Mycorrhizia is a beneficial fungus which helps plants take up phosphorus, zinc etc. Crops following fallow need extra P fertilizer.

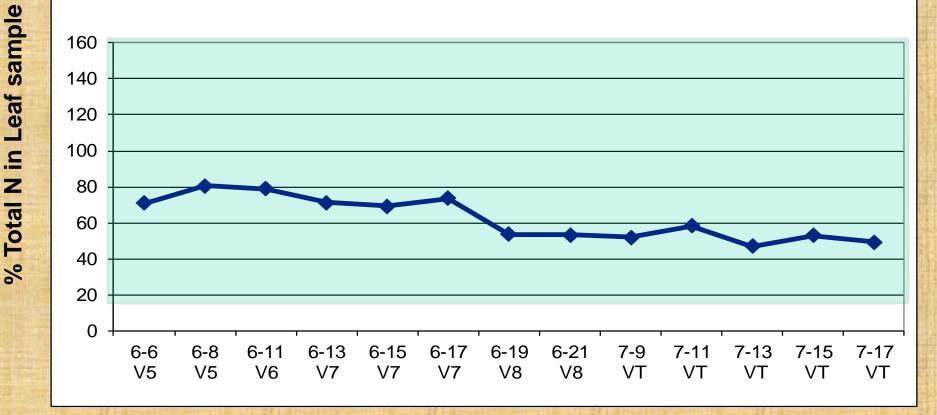
<u>Canola and sugarbeets</u> do not support Mycorrhizia fungus so they die off. The following crop then needs extra P fertilizer to ensure adequate P uptake.


Purple stunted corn Previous crop: <u>canola</u> Tissue P = .14% (suff .35 - .80) P soil test 8 ppm (Olsen)

Green normal height corn Previous crop: <u>Old tree row</u> Removed previous year Tissue P = .28% (suff .35 - .80) P soil test 8 ppm (Olsen)

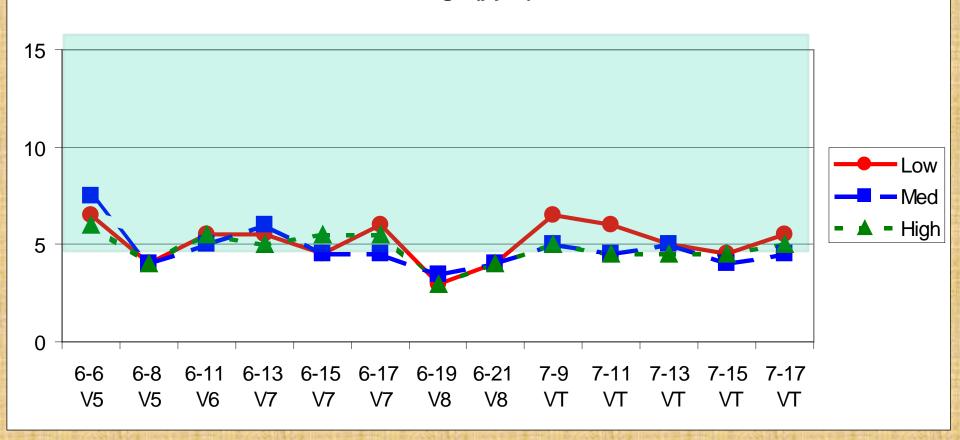
Boron Tissue Test Results Stage of Growth




Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

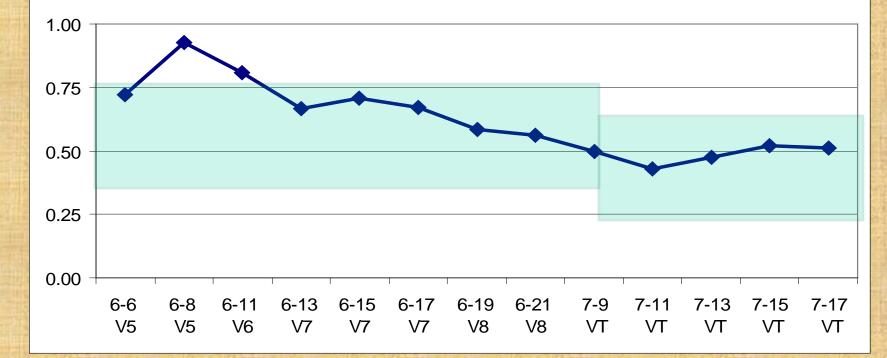
Manganese Tissue Test Results - Stage of Growth


Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

Boron Tissue Test Results – Stage of Growth

Boron (V5 - Tasseling) Suff. Range (ppm) = 5 - 25

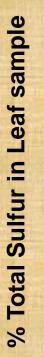


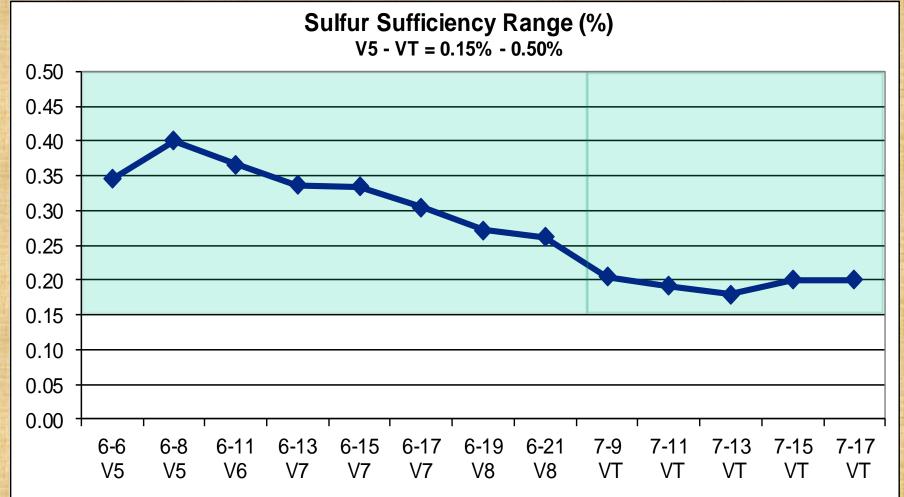
Average of low, medium and high sites from both fields.

Calcium Tissue Test Results - Growth Stage

Calcium Sufficiency Range (%) V5 - V8 = 0.25 - 0.8 VT = 0.25 - 0.6

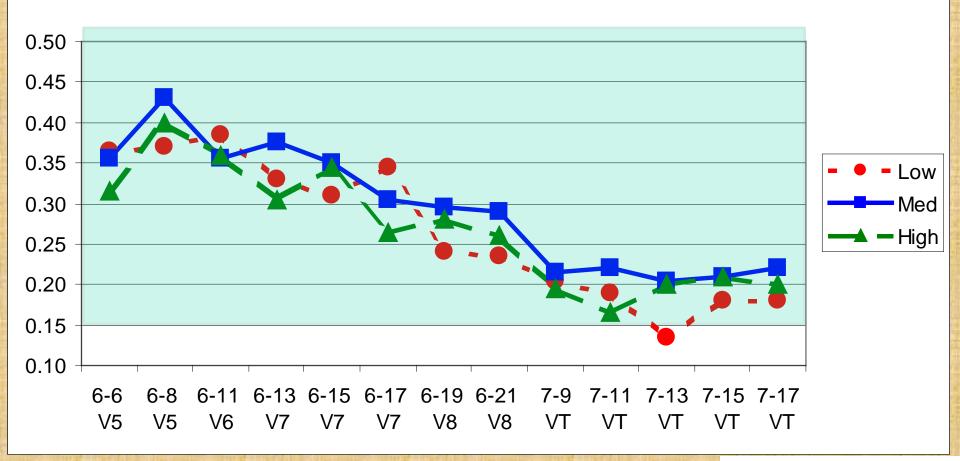
Corn Growth Stage


Average of all 6 tissue samples (3 from each field) on each sample date.


Fertilizer recommendation cannot be based on a plant nutrient analysis alone

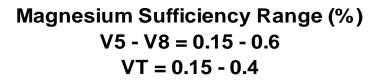
- Field/Soil Information Needed
 - Is the nutrient level in the soil low?
 - What rate and placement of fertilizer?
 - Has fertilizer been applied recently?
 - Is Crop Stressed? soil compaction, drought, flooding, root disease, pesticide carryover

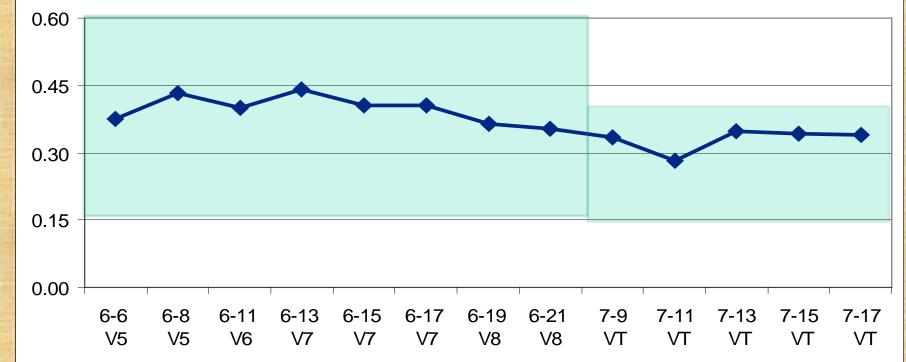
Sulfur Tissue Test Results - Growth Stage


Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

Sulfur Tissue Test Results - Stage of Growth


Sulfur % (V5 - Tasseling) Suff. Range (%) = 0.16 - 0.5



Average of low, medium and high sites from both fields.

Magnesium Tissue Test Results - Stage of Growth

Corn Growth Stage

Average of all 6 tissue samples (3 from each field) on each sample date.

