Phosphorus Response, Placement, and Movement

Daniel Kaiser

U of M Twin Cities 612-624-3482 dekaiser@umn.edu

Phosphorus in Soils

- Chemistry is complex bonds with many metal cations
- Exists in many pools
 - Labile, moderately labile, non-labile
- Pools are in a state of equilibrium
 - As plants take up P, mod. labile P may become available
- Absence in water limits algal growth

P Response

- Most studies agree on a critical soil P level around 20 ppm (Bray-P1)
 - May change from year to year
- Assessment of P availability only as good as the soil test taken
- Due to uncertainties a range of soil P may have to be maintained
- Agronomic maintenance for P should be around 30 ppm or less (Bray-P1)

To Build or Not to Build

- Cannot argue that higher soil test P will give greater yield
- Many philosophies will try to build to a certain point
 - Current U of M 10-15 ppm (Bray-P1)
- Main argument
 - Can soil P + fertilizer P maximize yield?
 - How much fertilizer to apply

Risk and Response

Response Curves

- Provides two key pieces of data
 - % of maximum yield
 - Probability of response
- Use to develop a management strategy
 - Based on attitudes toward risk
- Key points to remember
 - Yield tends to never be 0
 - Soil test declines tend to not be rapid

P Placement

After determining how we want to manage
 P then we need to decide how to apply it

- Broadcast
- Band
- Foliar

Soil Exploration

- Most crops only occupy <1 to 2% of the total soil volume
- Species will significantly differ in their rooting habits
- Must continually grow new roots to locate immobile nutrients

Percentage of the Total Soil Volume Occupied by Plant Roots of Different Crops (in the surface 8-inches of soil)

Crop	Root Volume (%)
Kentucky Bluegrass	2.8
Winter Rye	0.9
Oat	0.6
Soybean	0.4 - 0.9
Corn	0.4

Zones of Nutrient Uptake

Immobile Nutrients

Mobile Nutrients

Diffusion – Main Mechanism of P Movement

- Diffusion distances are very short
 - − K ~ 0.2 cm
 - − P ~ 0.02 cm
- Size and density of plant root systems is very important for nutrients supplied by diffusion
- Soil temperature is also important
- Has implications for fertilizer placement

Soil Volume Fertilized:Root and Top Growth

Soil Volume Fertilized	Tops	Roots
0/0	gms/plant	feet/plant
3	5.1	120
6	4.3	148
12	4.3	139
25	4.0	104

Soil Test P=low, 32 days after planting

How Effective is Banding vs Broadcast?

Relationship of Soil Test P level of ratio of broadcast and banded P required to obtain equal grain yield

Peterson et al., 1981. Agronomy J.

Phosphorus Enhancers

	Phosphorus (P ₂ O ₅) Rate					
	Starter			Bdcst	Product [†]	
	0	10	20	100	J	Α
	bu/ac					
Sibley	228	225	229	228	+1	+4
Y. Medicine	163	166	172*	164	+3*	-1
Polk	164	166	172*	171	-1	-1

†Response to P enhancer; J, Jumpstart; A, Avail.

^{*}Response was significant

Fertilizer Strategy -- Morris

		1 101110		
Treatmen	t Phos Rate	Phos Cost	Ave Yld	STP
	lb./acre	\$/acre	bu./acre	ppm*
control	0	0	169.0	4.0
removal	49	44.10	174.0	8.0
U of M bdcst	35	31.50	174.8	7.7
U of M band	25	22.50	175.0	5.0

Considerations for Second Year Crop - Soybeans

Acid Soils: Low P fixing capacity
Starter 5-6 GPA 3-18-18 – in furrow
Broadcast 100 lbs P2O5 & 120 lb K2O

Mallarino & Kaiser - ISU

Band vs. Broadcast

- Banding low rates at times can produce the similar yields to higher broadcast rates
- Efficiency is likely related to:
 - Soil test P
 - P fixing capacity of soils
- Soil testing becomes more difficult with banding
- Banding is more management intensive

Banding

- Building soil test levels is likely not feasible
- Can be more cost effective
 - Good for producers who want to maximize return per acre
- Places nutrient under the surface where there is less risk for runoff loss

Methods of P Loss

- Surface runoff erosion
 - Bound P erosion
 - Manure or Fert. Dissolved P
- Tile loss
- Crop uptake
- Fixation??

P Movement in Soils

- Most, if not all, P movement occurs with runoff
- Dissolved P is highly reactive with many elements within the soil
 - Downward movement only occurs if metal cations are not present
 - Or if the soil is saturated with P
 - Soil acts as essentially a filter for P
- Risk for dissolved P increases as soil test P increases
 - This DOES NOT mean there is necessarily a problem!

Soil-Test P and Surface Runoff

Manure P, Soil P, and Tile Drainage P

Manure P Source and Short-Term Runoff P

Runoff P within 24 hrs of Application Without Incorporation Averages Across 21 Iowa Fields

Manure Incorporation and Runoff P Loss

Poultry Manure at 0, 2, or 4 tons/acre, Shortly After Application Averages Across Eight Fields

Project supported by the IFLM Program of IDALS and the Iowa Egg Council

Kaiser, Mallarino, Haq, Sawyer, Thompson. ISU

Soil test P

- Need to have an upper limit
- No agronomic reason for applying P when soil test is 30 ppm or above
 - Starter applications sometimes a response
 - Manure some justification
- Keeping sediment loss low should be #1 priority to reduce P loss to surface waters
- Incorporation of P sources is also critical!

In Regards to P Movement

- A pound of P may not be a pound of P
 - Total P applied vs. Dissolved P loss
 - A pound of P applied may not be a pound lost
- Soil test P is an important factor for determining P loss
 - Soil erosion is a greater factor to consider
- No reason P cannot be applied beyond agronomic levels if all factors are considered

Thank You Questions?

Daniel Kaiser
University of Minnesota
612-624-3482

dekaiser@umn.edu

http://www.tc.umn.edu/~dekaiser/