In-Season N Predications: The Modeling Approach

Nutrient Management Conference February 9, 2016 Morton, MN

Disclosure/Disclaimer

- Working on a N management project funded by Pioneer
 - Data is being used to develop Encirca
 - I am not involved with Encirca development
 - I have not used Encirca
- I have not used N Advisor from Monsanto
- I have evaluated Adapt-N
- I will not discuss specifics of any model, but will provide an overview of what the modeling approach to N management is attempting to do

The Goals

- Improve N use efficiency
 - Improve profitability
 - Minimizing N loss to the environment
- Guide rescue N applications
- Do a better job than current N management tools
- Easier to use than current N management tools
- Profitable for model developer

The Challenges

- Predict
 - Weather
 - Crop growth
 - N cycling
- Risk of under fertilization

Inputs

- Site
 - Geo-referenced location
 - Rotation
 - Tillage, residue cover
 - Irrigation
 - Artificial drainage
- Soil
 - Texture
 - Drainage
 - Slope
 - Organic matter

- Crop
 - Hybrid info (RM)
 - Planting date
 - Planting population
 - Rooting depth
- Fertilizer and manure applications
 - Source/Analysis
 - Rate
 - Date
 - N Stabilizers/Extenders

Outputs

- Nitrogen
 - Crop N content
 - Soil N content
 - N transformations
 - N lost
 - N rate recommendation
- Available water

Weather

Estimates, Likely not measured Measured, past Estimated, future

Variability of estimate may be given

Short-term better than long-term

Example of complexity of estimating denitrification N losses

Denitrification

- $NO_3^- ---> N_2 \text{ or } N_2O$
- Need organic matter (carbon)
- Need NO₃⁻
- Wet soils with low O₂ content
 - Greater saturation periods results in more denitrification
- Temperature (bacteria prefer > 75°F)
- pH (bacteria prefer >5.0)

<u>Estimated</u> N losses from denitrification as influenced by <u>soil</u> temperature and number of days the soil is saturated (Bremner & Shaw, 1958)

Soil Temperature	Days Saturated		
	4	10	
° F	N loss (% of NO ₃ applied)		
50	3	6	
60	6*	12*	
70	12*	26*	
77	20	43	

^{*}Estimated using exponential function.

Note: Actual N loss will vary based on soil texture, organic matter content, microbial population, etc.

Approximate time until fertilizer N is nitrate

Fertilizer material	Approx. time until NH ₄ ⁺	Approx. time until NO ₃	
Ammonium sulfate, 10-34-0, MAP, DAP	100% is NH ₄ ⁺ , 0 weeks	1 to 2 weeks	
Anhydrous ammonia		3 to 8 weeks	
Urea	2 to 4 days	1.25 to 2.5 weeks	
Ammonium nitrate	50% is NH ₄ +, 0 weeks	50% is NO ₃ -, 0 weeks 50% in 1 to 2 weeks	
UAN	25% is NH ₄ +, 0 weeks 50% is urea, 2 to 4 days	25% is NO ₃ -, 0 weeks 25% in 1 to 2 weeks 50% in 1.25 to 2.5 weeks	

NOTE: Slow release materials or use of nitrification & urease inhibitors will generally lengthen the time it takes to convert to NO_3^- .

What constitutes saturated soil?

- Soil with standing water
- Soil where the surface is glistening

Not quite glistening

Example of how to estimate denitrification loss

Situation

- If 120 lb N/a as UAN was applied after planting corn
- N applied 3 weeks before saturated soil conditions existed
- Soil remained saturated for 5 days
- Soil temperature of 77 °F

Steps to take

- 1. Need to determine approx. how much nitrate is in the soil
- 2. How long was the soil saturated
- 3. What is the soil temperature

How much N in nitrate form?

Fertilizer material	Approx. time until NH ₄ ⁺	Approx. time until NO ₃ -
UAN	25% is NH ₄ +, 0 weeks 50% is urea, 2 to 4 days	25% is NO ₃ ⁻ , 0 weeks 25% in 1 to 2 weeks 50% in 1.25 to 2.5 weeks

120 lb N/a applied as UAN 3 weeks prior to saturation

 $25 \% NO_3^-$ when applied = $120 \times 0.25 = 30 \text{ lb N/a}$

Estimate that all 120 lb N/a was NO₃ when soil became saturated.

25 % NH_4^+ when applied = 120 x 0.25 = 30 lb N/a But 3 weeks since application. Therefore assume all NH_4^+ converted to NO_3^-

50% urea when applied = $120 \times 0.5 = 60 \text{ lb N/a}$ Enough time elapsed for conversion. Therefore assume all urea converted to NO_3^-

Example of how to estimate denitrification loss

- Situation
 - If 120 lb N/a as UAN was applied after planting corn
 - N applied 3 weeks before saturated soil conditions existed
 - Soil remained saturated for 5 days
 - Soil temperature of 77 °F
- Steps to take

120 lb N/a

- 1. Need to determine approx. how much nitrate is in the soil
- 2. How long was the soil saturated
- 3. What is the soil temperature

<u>Estimated</u> N losses from denitrification as influenced by soil temperature and number of days the soil is saturated (Bremner & Shaw, 1958)

Soil Temperature	Days Saturated			
	4		10	
° F	N loss (% of NO ₃ applied)			
50	3		6	
60	6*		12*	
70	12*		26*	
77	20		43	

^{*}Estimated using exponential function.

Note: Actual N loss will vary based on soil texture, organic matter content, microbial population, etc.

Example of how to estimate denitrification loss

- Situation
 - If 120 lb N/a as UAN was applied after planting corn
 - N applied 3 weeks before saturated soil conditions existed
 - Soil remained saturated for 5 days
 - Soil temperature of 77 °F
- Steps to take

120 lb N/a

- 1. Need to determine approx. how much nitrate is in the soil
- 2. How long was the soil saturated

Potentially 20% lost

3. What is the soil temperature

120 lb N/a \times 0.20 = 24 lb N/a potentially lost

Spatial Variability

 Are model inputs sensitive enough to capture spatial variability within a field

Spatial Variability in N Response

N Rate, lb N/a

A2 2013

Variability from Management

- Compaction
- Soil test levels
- Long term rotation and manure history

2 different farmsPrevious crop soybean2015 no-till2013 soil finisher, 47% residue

Validation

- Need independent validation of models
 - Across many geographies
 - Different soils
 - Different weather conditions
- Models need to be adequately tested
 - Comparing model rate to farmer rate is not adequate
 - How does model compare to actual optimum N rate for the site conditions?
 - Need a N rate trial to do this

Summary

- Modeling approach has a lot of appeal
 - Precision management, increased NUE
- Probably not enough validation at this time
- If you want to experiment, enroll a limited number of acres
- How will you determine if it ...
 - did a better than your usual management?
 - came closer to using the economic optimum N rate?

Carrie Laboski

Soil Fertility/Nutrient Management Specialist

laboski@wisc.edu

608-263-2795

www.NPKetc.info

www.ipcm.wisc.edu

