Proceedings of the $2^{\text {nd }}$ Annual Nitrogen: Minnesota's' Grand Challenge \& Compelling Opportunity Conference

Do not reproduce or redistribute without the written consent of author(s)

Clinate Trends and Their Implicaitons

Dr. Mark Seeley
Department of Soil, Water, and Climate
University of Minnesota St Paul, MN 55108

Nitrogen-Minnesota's Grand Challenge \& Compelling Opportunities Conference

February 23, 2016
Rochester, MN

70 degrees F at Lake Wilson, MN (Murray County) Feb 23, 2000
-43 degrees F at St Vincent, MN (Kittson County) Feb 23, 1889

Laké Superior almost completely frozen over Feb 23,1979
25^{5} of snowfall at Detroit Lakes, MN (Becker County) Feb 23, 1922

I MINNESOTA

 WEATHER ALMANAC

Minnesota weather and climate history

Sclimate.gov

U.S. National Climate Assessment

Vis. Global Ohange research program

Climate Change Impacts in the United States

National Climate Assessment 2014

Seaments

Changesin Temperature and Precipitation Some Associated Impacts

Comments on 2016 Outlooks

Land \& Ocean Temperature Percentiles Jan-Dec 2015

NOAA's National Centers for Environmental Information
Data Source: GHCN-M version 3.3.0 \& ERSST version 4.0.0

Statewide Average Temperature Ranks January-December 2015

Period: 1895-2015

Figure 3. Rate of Temperature Change in the United States, 1901-2008

This figure shows how average air temperatures have changed in different parts of the United
States since the early 20n century (since 1901 for the lower 48 states, 1905 for Hawaii, and 1918 for Alaska).

Disparity in the pace of climate change and the response to it

Minnesota Mean Annual Temperature Trends

Temp trend is upward and more frequently above the $90^{\text {th }}$ percentile, pace is $2^{\circ} \mathrm{F}$ per century.

Minnesota, Average Temperature, December-February

Seasonal Statewide Temperature Trends in MN

Trends in mean monthly temperatures at Winona, MN 1971-2000 normals vs 1981-2010 normals (F)

Month	Min Change	Max Change	Mean Ch
January	+4.8	+2.2	+3.5
February	+3.3	+0.8	+2.0
March	+2.1	+0.7	+1.9
April	+2.5	+1.5	+2.0
May	+1.7	NC	+0.8
June	+1.8	+0.2	+1.0
July	+1.8	+0.1	+0.9
August	+2.2	+0.3	+1.2
September	+2.9	+0.6	+1.7
October	+2.2	-0.1	-1.0
November	+2.3	+0.4	+1.3
December	+3.4	+1.4	+2.4

Trends in mean monthly temperatures at Austin, MN 1971-2000 normals vs 1981-2010 normals (F)

Month January

	+0.1	+0.2	+0.1
February	-0.1	-0.1	-0.2
March	+1.3	+0.2	+0.7
April	+0.9	-0.8	+0.1
May	+1.6	-0.4	+0.5
June	+1.1	+0.2	+0.7
July	+1.6	+0.4	+1.0
August	+1.3	+0.6	+1.0
September	+1.7	-0.3	+0.7
October	+2.1	+1.7	+1.9
November	+2.2	+1.4	+1.8
December	+2.2		

Minimum T

There are regional differences in the rate of change in maximum versus minimum temperature

Statewide

Minnesota, Minimum Temperature, December-February

Change in average winter minimum temperature is $5^{\circ} \mathrm{F}$ per century

Trends in average winter minimum

 temperatures Rochester, MNPeriod of Record 1951-1980
1961-1990
1971-2000
1981-2010
1951-1980
1961-1990
1971-2000
1981-2010
1951-1980
1961-1990
1971-2000
1981-2010

Ave Min Temp in Deg. F Jan 1.9

Jan 2.7
Jan 3.7
Jan 7.7
Feb 7.6
Feb 8.1
Feb 10.6
Feb 12.4
Mar 19.2
Mar 21.3
Mar 22.6
Mar 24.3

Minnesota State-Averaged Temperature Trends 1895-2013

Great Lakes Region ($32^{\circ} \mathrm{F}$ threshold)

Source: K. Kunkel, Midwest. Reg. Clim. Center

Consequences of Warmer Temperatures

Change in depth and duration of soil freezing
More rapid breakdown of crop residues
Earlier planting opportunities based on soil temperature
Later fall nitrogen applications due to warm soils
Change in survival rates of insect pests, parasites, plant pathogens, and soil microbes

Increased number of freeze/thaw cycles/ more intermittent snow cover during winter

Longer growing seasons
More Growing Degree Days, especially spring and autumn

Statewide Precipitation Ranks

 January-December 2015Period: 1895-2015

Observed U.S. Precipitation Change, 1991-2011 vs. 1901-1960 Average

Geographic Disparity in Precipitation Change-IPCC 2013

Average Annual PPT 1891-1920, in

Trend in annual precipitation for MN

Statewide Seasonal Trends in Minnesota Precipitation

Minnesota, Precipitation, September-November

Change in Annual Precipitation "Normals" at Faribault, MN

PERIOD

$1921-1950$
$1931-1960$
$1941-1970$
$1951-1980$
$1961-1990$
$1971-2000$
$1981-2010$

AMOUNT (IN.)

$24.80^{\prime \prime}$
$27.06^{\prime \prime}$ 29.49" $30.30^{\prime \prime}$
31.00"
31.67"
$32.63^{\prime \prime}$

31 percent increase since $1921-1950$ period Extremes: 10.81" in 1910, 42.20" in 1951

Change in Annual Precipitation Normals at Winona, MN

PERIOD
 AMOUNT (IN.)

$30.34^{\prime \prime}$ 30.57"
31.29" 32.81" 34.19°
34.61"
$35.12^{\prime \prime}$

16 percent increase since 1921-1950 period Extremes:

Trends in average annual precipitation for Rochester, MN

Period of Record

Long term annual precipitation trend at Rochester is about an 8 inch increase per century, on of the highest in the state.

Precipitation trends for field working months at Rochester, MN

Rochester, Minnesota, Precipitation, October

Rochester, Minnesota, Precipitation, November

Precipitation trends during the growing season months at Rochester, MN

MINNESOTA WEATHER ALMANAC

SECOND EDITION

Completely Updated for the New Normals

Measurable Attributes of Precipitation

Quantity

Type (liquid,frozen)
Intensity (9-15")
Frequency (74-145 days)
Duration (10 days)
Seasonality (shifting)
Landscape relationship
(interception, absorption, runoff, evaporation)

Days per Year with Favorable Severe Parameters

from Brooks et al, NOAA-SSL, 2012

I MINIESOTA WEATHER ALMANAC

SECOND EDITION

Completely Updated for the New Normals

Historic Droughts
(Associated fires)

1829, 1852, 1856

1863-1864, 1871-1872
1894, 1896, 1900,
1910, 1918, 1921-1923
1926, 1929-1934,
1936-1939, 1948,
1954-1956, 1961,
1976, 1980, 1984,
1987, 1988, 1997, 2005-2007 2008 2009, 2010, 2011, 2012, 2013

Historical recurrence interval of 2 inch rains in southern and eastern MN

 was calculated to be once per year. This is no longer the case.Observed 2 inch rainfalls for the period 1.991 2015 and maximum single day value for various communities:

Location
Albert Lea
Waseca
Winnebago
Owatonna
Amboy

42
40
41
47
42
40
No. 2 in. rains
49
54
47
46
42
40
41
47
42

Maximum Value (date)
7. 50 ($6 / 15 / 1978)$
$5.63(9 / 23 / 2010)$
$8.64(9 / 25 / 2005)$
$6.47(8 / 19 / 2007)$
9.48
(9/23/2010)
8.84 (9/23/2010)
6.20 (9/15/2004)
$5.50(6 / 15 / 1978)$
9. 22 (-9/1/4/2004)
$5.10(8 / 19 / 2007)$

Observations - Minnesota Trends

Minnesota Mega-rain Events

August 6, 1866, Southern Minnesota July 17-19 1867, Central Minnesota July 20-22, 1909, Northern Minnesota September 9-10, 1947 Iron Range July 21-22, 1972, Grand Daddy Flash Flood June 28-29, 1975, Northwest Minnesota July 23-24, 1987, Twin Cities Superstorm June 9-10, 2002, Northern Minnesota September 14-15, 2004 Southern Minnesota August 18-20, 2007, Southern Minnesota September 22-23, 2010 Southern Minnesota June 19-20, 2012, Northeast Minnesota

*Defined as 6" or greater rains cover at least 1000 square miles and a peak amount of $8^{\prime \prime}$ or greater

Shift in

Precipitation Recurrence Intervals

Mega Rains since 2002

Rainfall Totals - June 9 and 10, 2002

'1000-yr (approx.) events' in Southern Minnesota in the last decade. September 14-15, 2004

012345678101214 inches
August 18 through August 20 (8:00 AM CDT), 2007

A 'by-eye' estimate of the total area covered by $10^{\prime \prime}$ of rain over the 7 years of 2004-2010 appears to be near 1400 sq . mi . or about 200 sq . mi per year. Given that the area of the southern 3 layers of counties looks to be approximately 20000 sq. mi. the areal fraction of the southern three counties covered by $10^{\prime \prime}$ per year appears to be approximately $1 / 100$; i.e. at the rate of coverage for the last 7 years an area equal to the whole southern three county area could be covered in about 100 years.

Consequences of Changes in Precipitation Quantity and Character

Altered irrigation, tile drainage, runoff, sediment, and shoreline management

Change-in storm sewer runoff and culvert designs

Mitigation of soil erosion via buffers, contours, and cover crops

Mitigation of flooding potential
Impact on insurance risk and claims

Current Frost Depths:
6" at Pipestone
8" at Lamberton
12" at Waseca
Average historical values for mid-February range from 25 " to 35 "

Available Soil Water - 2015
Southern Research and Outreach Center

Date

5 ft soil moisture profile measurements

Statewide Precipitation Ranks

September-November 2015
Period: 1895-2015

Wetter than normal autumn in Minnesota with 2-3 extra inches of precipitation across many counties

Statewide Precipitation Ranks
December 2015
Period: 1895-2015

Second wettest December of all-time in Minnesota, trailing only 1968. Many areas received more rain than snow and some reported over 3 inches.

Regional snow depth map, Feb 11, 2016

Stored soil moisture anomaly for Feb 10, 2016 indicates a surplus of 2-4 inches across southern MN

U.S. Seasonal Drought Outlook Drought Tendency During the Valid Period

Valid for January 21 - April 30, 2016
Released January 21, 2016

Ensemble forecast for March-May, 2016 Temperature Anomaly

Ensemble forecast for precipitation anomaly March-May 2016

SUMMARY

Trends toward warmer temperature and more precipitation continue in recent years.

Probability for early spring is high (early loss of soil frost).
Probability for warmer than normal growing in 2016 season is high.
Outlook for moisture is uncertain, but stored soil moisture provides a better than normal buffer for 2016.

