Proceedings of the 2nd Annual Nitrogen: Minnesota's' Grand Challenge & Compelling Opportunity Conference

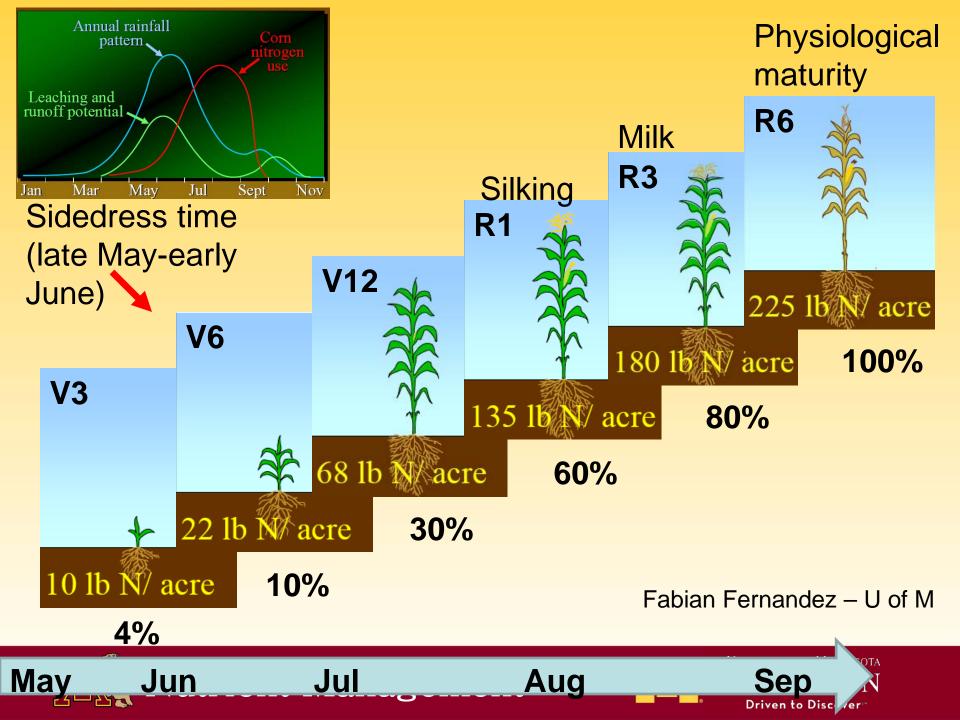
Do not reproduce or redistribute without the written consent of author(s)

In-Season N Predictions Using Canopy Sensors

Daniel Kaiser Associate Professor Department of Soil, Water and Climate

U of M Twin Cities 612-624-3482 dekaiser@umn.edu

2016 Nitrogen Conference, Rochester, MN


Sensor Based N Management

- In theory, offers a relatively simple method to manage N without having to physically take a sample
- Sensors have been in place for about 20 years
 Earliest was SPAD Chlorophyll meter
- Satellite imagery has been around for longer
 - Offers some advantages but also some major limitations
 - Limitations: return rate, minimum amounts of data to purchase, limited control on when the picture will be taken

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover³⁴

Innovations in Remote Sensing

Adapted From D.J. Mulla

Year	Innovation	Citation
1992	SPAD meter (650, 940 nm) used to detect N deficiency in corn	Schepers et al., 1992
1995	Nitrogen Sufficiency Indices	Blackmer and Schepers, 1995
1996	Optical sensor (671, 780 nm) used for on-the-go detection of variability in plant nitrogen stress	Stone et al. (1996)
2002	Yara N sensor	Link et al. (2002), TopCon Industries
2002	GreenSeeker (650, 770 nm)	Raun et al. (2002), NTech Industries
2004	Crop Circle (590, 880 nm or 670, 730, 780 nm)	Holland et al (2004), Holland Scientific
2002	CASI hyperspectral sensor based index measurements of chlorophyll	Haboudane et al. (2002; 2004)
2002	MSS remote sensing of ag fields with UAV	Herwitz et al. (2004)
2003	Fluorescence sensing for N deficiencies	Apostol et al. (2003)

Development of Satellite Imagery

Adapted from D.J. Mulla

Satellite (Year)	Spectral Bands (Spatial Resolution)	Return Frequency (d)	Suitability for PA	
Landsat 1 (1972)	G, R, two IR (56x79 m)	18	L	
AVHRR (1978)	R, NIR, two TIR (1090 m)	1	L	
Landsat 5 TM (1984)	B, G, R, two NIR, MIR, TIR (30 m)	16	М	
SPOT 1 (1986)	G, R, NIR (20 m)	2-6	М	
IRS 1A (1988)	B, G, R, NIR (72 m)	22	М	
ERS-1 (1991)	Ku band altimeter, IR (20 m)	35	L	
JERS-1 (1992)	L band radar (18 m)	44	L	
LiDAR (1995)	VIS (vertical RMSE 10 cm)	N/A	н	
RadarSAT (1995)	C-band radar (30 m)	1-6	М	
IKONOS (1999)	Panchromatic, B, G, R, NIR (1-4 m)	3	н	
SRTM (2000)	X-band radar (30 m)	N/A	М	
Terra EOS ASTER (2000)	G, R, NIR and 6 MIR, 5 TIR bands (15-90 m)	16	Μ	
EO-1 Hyperion (2000)	400-2500 nm, 10 nm bandwidth (30 m)	16	н	
QuickBird (2001)	Panchromatic, B, G, R, NIR (0.61-2.4 m)	1-4	н	
EOS MODIS (2002)	36 bands in VIS-IR (250-1000 m)	1-2	L	
RapidEye (2008)	B, G, R, Red edge, NIR (6.5 m)	5.5	н	
GeoEye-1 (2008)	Panchromatic, B, G, R, NIR1, NIR2 (1.6 m)	2-8	Н	
WorldView-2 (2009)	P, B, G, Y, R, Red edge, NIR (0.5 m)	1.1	н	NS

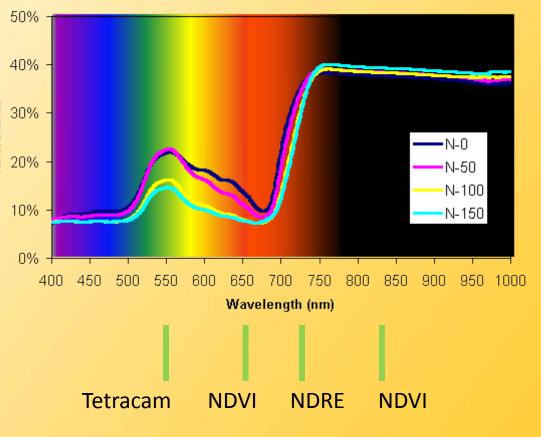
How do we use these tools?

- 1. Use to schedule application during the season. all N put on in-season.
- 2. Put a small amount on at planting and use the tool to determine the need in-season?
- 3. Put half or more pre-plant and use the tool to determine if it needs to be topped off?

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

How to Make Sensors Work

- Sensor/Index used must be reflect sufficiency of a particular nutrient
 - Sensors will generate values but they must be made relative to a reference area/strip
- Sensor/Index must be able to forward predict nutrient sufficiency
 - Nutrient sufficiency at the time data are collected must be relative to the overall sufficiency at the end of the season
- For a given nutrient: we must have confidence differences detected by sensors are due to a particular nutrient



UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

Properties of N deficient Plants

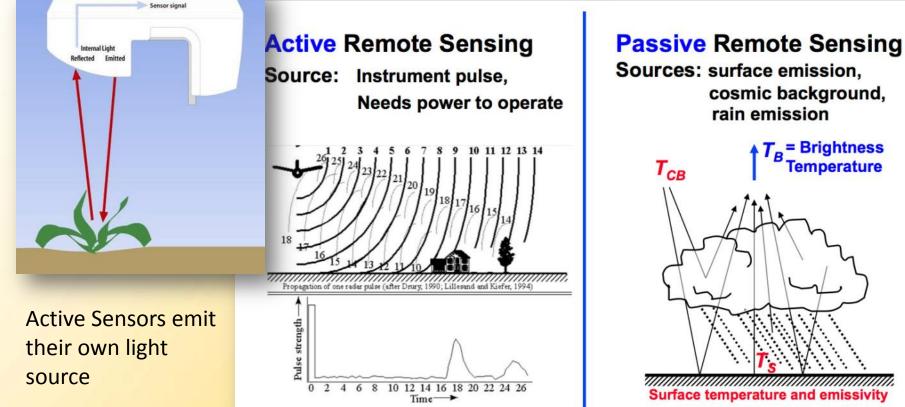
- Green reflectance increases
- Red reflectance increases & NIR reflectance decreases
- Differences in reflectance greatest between 550 – 600 nm, followed by rededge (680 – 730 nm)

D.J. Mulla, University of Minnesota

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover⁵⁴⁴

Sensor/Imaging Options

- R-G-B pictures
- Multi-spectral imagery
 - Images captured at specific wavelengths
 - Narrow and wide band
- Thermal
- Fluorescence
- Hyper spectral imaging
 - Data collected across the spectrum at set intervals (nm)



UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Active or Passive Sensing

Remote Sensing Fundamentals

Soil Fertility

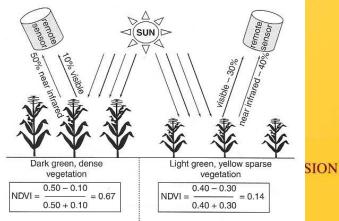
UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

Active or Passive Sensors

- Active sensors
 - Pros have their own light source, some are plug and play, can work with fertilizer controllers for on-the-go application
 - Cons data is expressed in terms of indices, narrow area where data are collected
- Passive Sensors
 - Pros Scan larger areas of fields quickly, ability to choose what indices to use
 - Cons Data processing, affected by ambient light, must process data to make it useful

UNIVERSITY OF MINNESOTA | EXTENSION **Driven to Discover**[™]

Can We Use Crop Sensors To Improve N Management?



UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover*

NDVI

- Normalized Difference Vegetative Index
 - No units associated with the value
 - Arbitrary number based on conditions within the field
- Index utilized by many types of sensors
 Satellite imagery can produce NDVI as well
- Ratio of reflectance values in the Red and NIR bands
 - (NIR-Red)/(NIR+Red)

NDVI - Limitations

- NDVI is predicated on differences among treatments are expressed as differences in plant growth
 - Greenness does not factor in to this measure
 - Measure of stand density
- Poorly growing plants can be due to a number of factors
- NDVI reaches saturation early in the growing season

UNIVERSITY OF MINNESOTA | EXTENSION . Driven to Discover™

Other Options

- NDRE Normalized difference Red-Edge
 - Ratio of red-edge to NIR
 - Red-edge is measured in the region between red and NIR
- GNDVI Green normalized difference vegetation index
 - Ratio of Green to NIR
- Many other indices developed for use

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴⁴

What is the best Index of N Availability

- Red/NIR indices from active sensors are not adequate to determine yield differences due to N unless soil N availability is low
- SPAD data provides better prediction but is more labor intensive
 - May not get a good representative sample
- NDRE may be a better index overall – (NIR-R_{edge})/ (NIR+R_{edge})
- GNDVI may relate better to N stress as well

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover[™]

Moving Forward

- We need to have some confidence that we can accurately predict response to N
 - In a production field how do we know yellow corn is due to N
- We still need to have reference strips

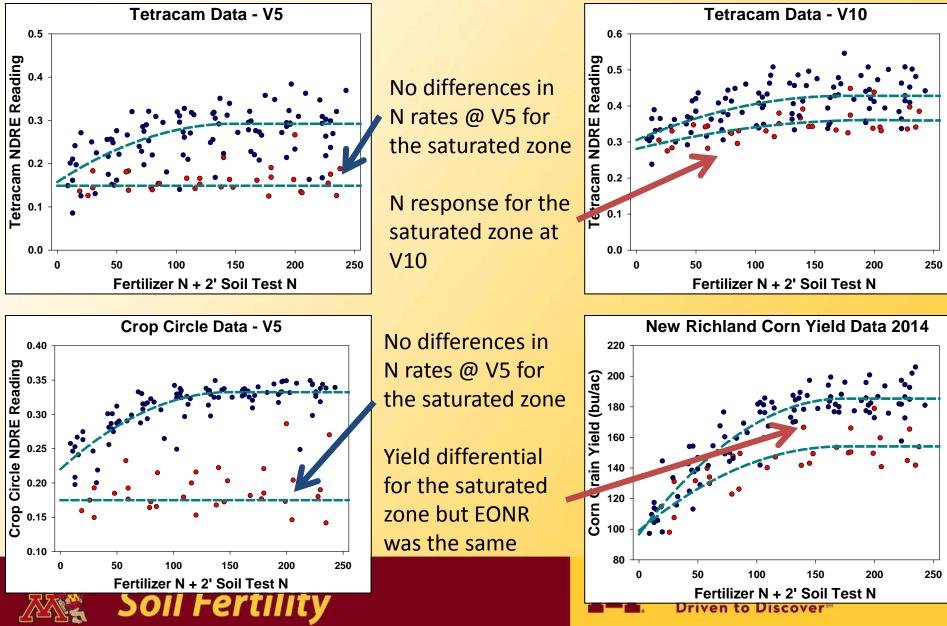
 All values are derived in relation to a normal area
- There are many sensing options out there, how do we choose the right one?
- CASE STUDIES

UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

New Richland, MN V5 Corn: 2014

Water Free Area

Previously flooded area



UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

New Richland 2014

2015 – N Prediction Methods Study

Stewart, MN Sb-C

- Nicollet Cl
- 96 day RM planted 4/25
- 5.5 GPA 10-34-0
- 22" rows
- 32 lb N @ 2'
- Applied 40 lb of N as a base rate before side-dress

Methods Used

- 1. Soil tests 2' pre-plant and 1' PSNT
- 2. Active sensors SPAD @ V5, V10, and R2; Crop Circle @ V5 and V10
- 3. Multispectral images @ V5, V10, and R2
- 4. Crop models

rows • 30" rows • N @ 2' • 38 lb N @ 2'

• Applied 45 lb of N as a base rate before side-dress

101 day RM planted 5/1

Waseca, MN C-C

• 2.5 GPA 10-34-0

Webster Cl

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

Active Sensor Prediction: % of Max by pre-plant Nitrogen Rate

Stewart, MN Sb-C

Waseca, MN C-C

	40	80	120		45	90	135	
V5	% of Max			V5	% of Max			
NDVI-CC	102	100	99	NDVI-CC	96	100	101	
NDRE-CC	98	99	99	NDRE-CC	85	96	100	
SPAD	93	95	100	SPAD	84	99	98	
V10				V10				
NDVI-CC	100	100	99	NDVI-CC	94	98	99	
NDRE-CC	95	97	99	NDRE-CC	76	89	94	
SPAD	95	99	99	SPAD	76	92	96	

Assuming an economic response will occur when < 95%

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Aerial Image Prediction: % of Max by pre-plant Nitrogen Rate

Stewart, MN Sb-C

Waseca, MN C-C

	40	80	120		45	90	135	
V5	% of Max			V5	% of Max			
NDVI	98	98	100	NDVI	96	98	99	
NDRE	96	98	98	NDRE	88	102	102	
GNDVI	99	98	102	GNDVI	88	101	103	
V10				V10				
NDVI	99	100	99	NDVI	89	101	99	
NDRE	92	99	96	NDRE	76	95	91	
GNDVI	96	98	98	GNDVI	81	97	95	

Assuming an economic response will occur when < 95%

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover[™]

Prediction Using Active Sensors

AEONR vs Max. Sensor Value (actual)

Stewart, MN Sb-C

Waseca, MN C-C

Sensor	Stage	ΔEONR	Sensor	Stage	∆EONR
NDVI-CC	V5	-60	NDVI-CC	V5	-181
NDRE-CC		-59	NDRE-CC		-165
SPAD		-39	SPAD		-115
NDVI-CC	V10	-30*	NDVI-CC	V10	-122*
NDRE-CC		-28*	NDRE-CC		-34*
SPAD		-22	SPAD		-39
SPAD	R2	34**	SPAD	R2	47***

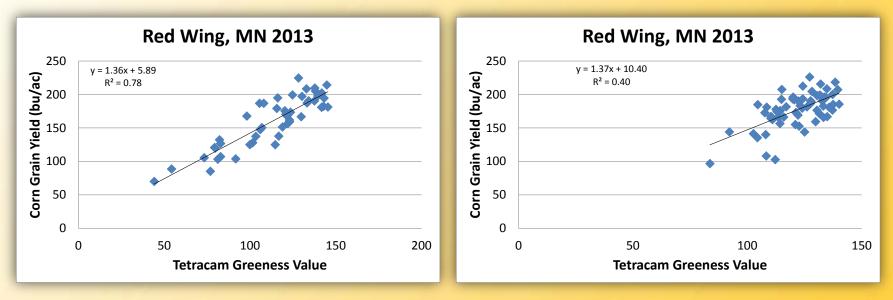
R²: <u>>0.75 (***), >0.50 (**), >0.25 (*)</u>

UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

Prediction Using Aerial Images

AEONR vs Max. Sensor Value (actual)

Stewart, MN Sb-C


Waseca, MN C-C

Sensor	Stage	∆EONR	Sensor	Stage	∆EONR	
NDVI	V5	-44	NDVI	V5	-155	
NDRE		-42	NDRE		-86	
GNDVI		-46	GNDVI		-164	
NDVI	V10	-23	NDVI	V10	-106	
NDRE		255	NDRE		1	
GNDVI		-17	GNDVI		-23	
NDVI	R2	-19	NDVI	R2	27*	
NDRE		19*	NDRE		60**	
GNDVI		6*	GNDVI		50**	ENS

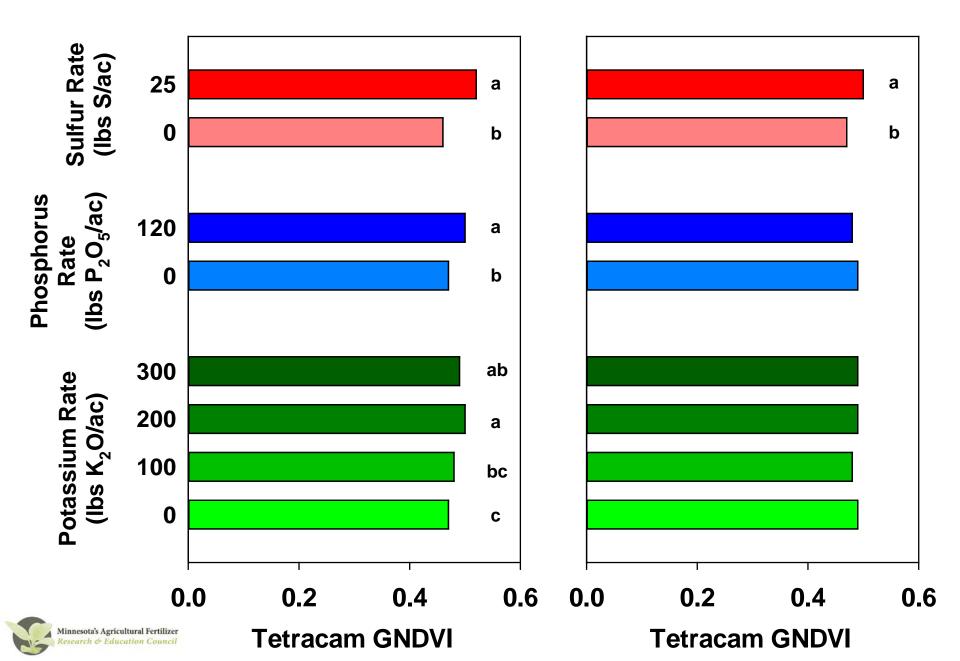
Greenness Versus Grain Yield Red Wing, MN 2013

N x S Study

P x K x S Study

- Greeness value: Raw pixel values from the 550 nm band
- Strong correlation between the greenness index value and yield for the N x S study
- Weaker correlation in the P x K x S study but it is still significant

Soil Fertility



UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴⁴

V10 Sampling

R2-R3 Sampling

Sensing and Crop Nutrients

- Sulfur will likely prove to be the most challenging nutrient when sensing for N deficiency
 - Deficiencies are not mutually exclusive
 - S deficiency not as apparent as N late in the season, but yield differences can be large
- P and K may have an impact in the case of severe deficiencies
 - Especially for biomass indices
- What about zinc?

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover^{®®}

Final Comments

- Things can be built faster than we can figure out how to use them
- I think there still may be some benefits to using UAV's

 General scouting tool
- Nutrient detection may get better
 - Many deficiencies result in chlorosis
 - Important question: is the deficiency due to N?
- Ground based sensors may have some utility under certain circumstances
- Still will require a reference strip if we want to manage a specific nutrient

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Thank You Questions?

SW&C Field Crew Fabian Fernandez Jeff Vetsch **Cooperators and Consultants**

Minnesota's Agricultural Fertilizer Research & Education Council

MN Soybean Research & Promotion Council **University of Minnesota** 612-624-3482

Daniel Kaise

1、10日間になって、1、10日前になる時間になって、1日間になって

dekaiser@umn.edu

http://.z.umn.edu/nutmgmt http://z.umn.edu/fbnutmgmt