Nitrogen Timing and Crop Uptake

Nitrogen Management Research

Dr. Albert L. Sims University of Minnesota Northwest Research and Outreach Center Crookston, Minnesota

Topics I will Cover

- Nutrient Management:
 - A very Complex System
 - It is much more than just putting on some fertilizer!
 - Must have an appreciation of the complexity of plant
 - Must have an appreciation of the complexity of the soil
- I will cover some basic plant physiology
- Nutrient Use Efficiency
- Touch on fertilizer management

Nitrogen, why is it important?

- It makes the crop grow and turn green......Right?
 - Growing and turning green are consequences of how the plant uses Nitrogen
- Nitrogen is a major component of ALL amino acids
 - Amino Acids are building blocks of proteins and enzymes
 - Life could not exist without the biochemical reactions mitigated by the proteins and enzymes.

Nitrogen, why is it important?

- -78% of the atmosphere is nitrogen (N₂)
 - Plants cannot use N₂
 - Nitrogen must be converted to a useable form
 - Requires a lot of energy input for conversion
 - > Lightning
 - Symbiotic relationships
 - Electricity or Fossil fuel
 - Ammonium (NH₄⁺) and nitrate (NO₃⁻)
 - Primary N species used by agronomic crops
 - Absorption and assimilation are different

- Root cells
 - Inside has negative charge compared to outside
 - Attracts cations (+ charged molecules.... NH₄⁺)
 - Repels anions (- charged molecules.....NO₃-)
 - Inside has higher concentration of nitrate compared to outside.
 - Nitrate tends to want to diffuse out and not in cell
 - Together: electrochemical potential gradient.
 - Down hill gradient for NH₄⁺
 - Up hill gradient for NO₃⁻

- Ammonium (NH₄⁺) absorption and assimilation
 - Absorption is almost a passive uptake
 - Downhill electrochemical potential gradient
 - Very little energy input
 - Must maintain electrochemical potential gradient
 - Energy input to maintain the gradient
 - NH₄⁺ is toxic to the plant at relatively low concentrations
 - Carbohydrates sent to roots to assimilate NH₄⁺ immediately.
 - Assimilated NH₄⁺ is transported throughout plant and converted to amino acids, proteins, and enzymes

- Nitrate (NO_3^{-}) absorption and assimilation
 - Absorption is an active uptake process
 - Uphill electrochemical potential gradient
 - Requires substantial energy
 - NO₃⁻ can be transported and stored in the plant
 - not toxic
 - Stored in roots or above ground plant parts
 - NO₃⁻ must be reduced to NH₄⁺ before it can be assimilated
 - Requires substantial energy
 - NH₄⁺ assimilated as before

- Where does that energy come from?
 - Photosynthesis
 - Sun energy captured in chloroplasts
 - Converts CO₂ and H₂O to carbohydrates (energy captured in carbon bonds.
 - Respiration
 - Carbohydrates translocated to root (other plant parts)
 - Carbohydrate plus O₂ produces CO₂ and H₂O
 - Energy released as carbon bonds break

Nitrogen Management

- The soil complexity eliminates simplicity of nutrient management.
- For some, N management simply means how much fertilizer to apply, how to apply it, when to apply it, and where to apply it.
 - We could talk about this
 - This information is readily available
 - Extension, News articles, local fertilizer dealer etc.
- I want to take this talk to a little higher level
 - 10,000 ft level

Nitrogen Use Efficiency (NUE)

- The goal of most nutrient management specialists and researchers:
 - Maximize the effectiveness of the nitrogen that is available to the crop.
 - We call this, Nitrogen Use Efficiency (NUE)
- Maximize NUE!!!
 - Maximize returns for inputs
 - Dollars
 - Resource Use
 - Minimize risks to the environment

Nitrogen Use Efficiency (NUE)

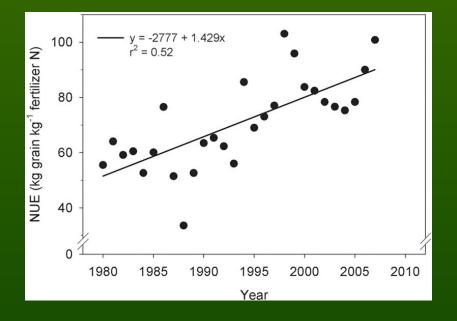
- Many definitions of NUE
 - Depends on who is evaluating NUE
 - Overall NUE is composed of several different components.
 - Each component offers different pieces of information
 - Can be used for different interpretations and meanings.
 - Allows us to study different components of a complex system.
 - If someone uses this term, ask them to define it.

Nitrogen Use Efficiency (NUE)

Nitrogen Use Efficiency (NUE)...as I am using it.

NUE = N Agronomic Eff. X N Uptake Eff.

N Agronomic Efficiency: lbs. grain produced / lbs. N uptake)


N Uptake Efficiency: Ibs N accumulated / Ibs. N available

NUE = lbs. grain produced / lbs. N available

Nitrogen Use Efficiency

- Agronomic Efficiency
 - Lb. of grain produced per lb. of N accumulated
- Combines elements of N accumulation and remobilization and their effects on dry matter accumulation and remobilization.
- Too complicated for a 30 minute general talk
 - Production efficiency
 - Remobilization/translocation efficiency
 - Accumulation efficiency before anthesis and after anthesis

Nitrogen Agronomic Efficiency in Corn

Adapted from Long-term continuous corn and nitrogen fertilizer effects on productivity and soil properties, Bundy, Andraski, Ruark, and Peterson. 2011. Agron. J. 103:1346-1351

Another source: Nitrogen use efficiency of corn increased from about 30 lbs. of grain per lbs. of nitrogen in 1960 to 60+ lbs. grain per lbs. of nitrogen in 2006.

Other sources indicate yields have increased about 2.2 bu. Ac⁻¹ yr⁻¹ will N rates have remained relatively static or perhaps decreased.

Nitrogen Agronomic Efficiency

- Why is the Agronomic Efficiency increasing?
 - At the field level
 - Better Hybrids/Varieties
 - Less stress from pests
 - Stacked traits
 - Better pesticides and pesticide management
 - Better agronomic cultural practices
 - Maybe some environmental issues?
 - Appears to be happening in several crops
 - Corn
 - HRSW
 - Sugar Beets

Nitrogen Agronomic Efficiency

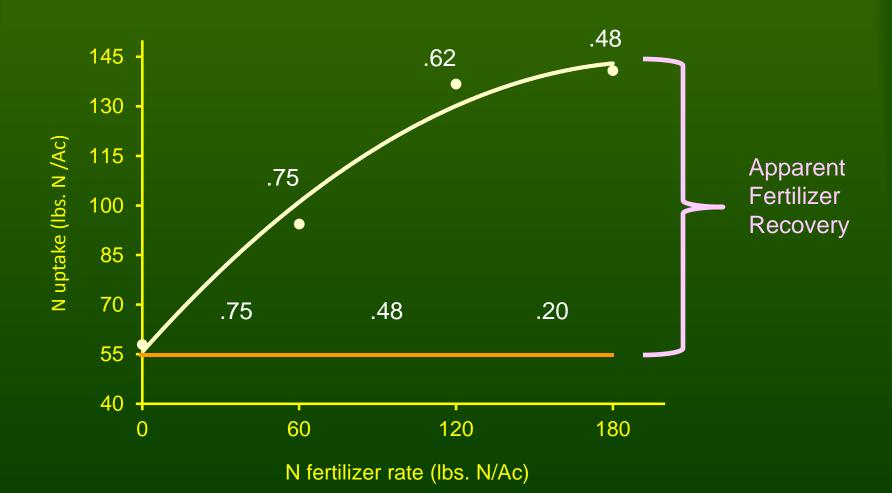
- Regardless of the reason, it seems to be happening
 - People are nervous about it.
 - Question current N guidelines
 - Want to increase N fertilizer applications
 - We must maintain vigilance with continued Nitrogen research
 - Things change over time
 - Principals probably remain the same
 - Their application to real world situations may change
 - Vulnerable to sales pitches with no or shaky research data.
 - A pitch with no data.....is an untested hypothesis!

Nitrogen Uptake Efficiency

- Most nutrient management specialist, regardless of specific role, work on this component of NUE.
- How do we maximize, or optimize, the uptake of nitrogen into the crop?
 - Crop gets it Nitrogen from:
 - Leaves.....foliar absorption
 - Roots..... this talk will focus on this part
 - Uptake Efficiency relates to uptake efficiency of available N

Nitrogen Uptake Efficiency

- Where does the crop get its nitrogen?
 - Residual soil nitrate
 - Estimated by a soil test
 - Mineralization of organic N to inorganic N
 - Very difficult to predict
 - Depends on:
 - Moisture, temperature, oxygen, amount and type of organic matter, time
 - Fertilizer
 - Manure (more difficult to estimate)
 - Commercial fertilizer (known N content and availability


Nitrogen Uptake Efficiency

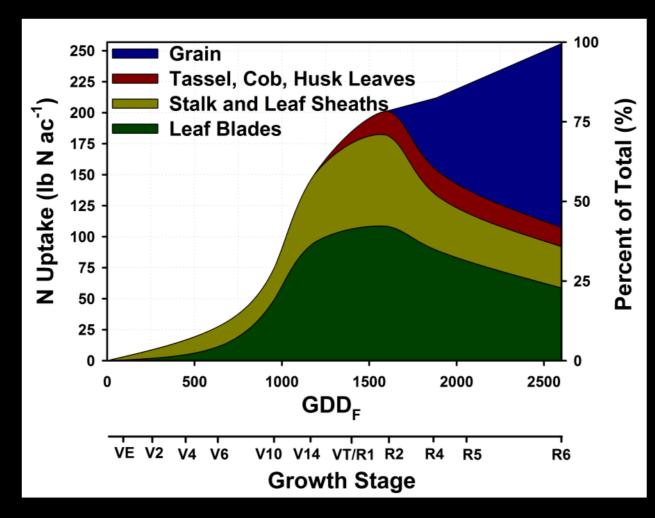
- Fertilizer management offers us the best opportunity to manage nitrogen
 - We can manage:
 - Rate
 - Timing
 - Placement
 - Source
 - Summarized into The 4 Rs:
 - Right Source, Right rate, Right Time, Right Place
- We want to maximize the Recovery of Fertilizer Nitrogen

Fertilizer Recovery Efficiency (FRE)

- The goal of Fertilizer management:
 - Maximize Fertilizer Recovery Efficiency (FRE)
- Two ways to study FRE
 - 1. ¹⁵N (fertilizer with a chemical isotope of N)
 - Can apply fertilizer with enriched or depleted ¹⁵N isotope relative to natural
 - Evaluate N in plant for enrichment or depletion of ¹⁵N.
 - 2. Difference Method
 - (lbs. N (fert) lbs. N (check))/N applied
 - Apparent Fertilizer Recovery Efficiency

Apparent Nitrogen Fertilizer Recovery in HRSW

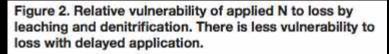
Combined data from 4 Hard Red Spring Wheat Varieties. Sims and Wiersma, 2011

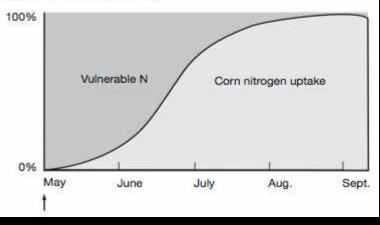

Nitrogen Fertilizer Recovery

- World wide: 33% of fertilizer is recovered
- What happens to that not recovered?
 - Measured as residual nitrate-N in soil test
 - Immobilized: converted from inorganic N to organic N
 - Some will remain in the labile organic N pool
 - Unaccounted for
 - Many trials do N balance using either Difference or ¹⁵N
 - Frequently cannot account for 20 30% of fertilizer N
 - Leached below sampling zone?
 - Denitrification?
 - Volatilzation (from soil surface and the plant)?

From Research to Recommendation

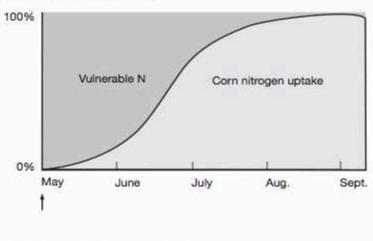
- Intensive research efforts on many subcomponents of:
 - Agronomic Efficiency
 - Uptake Efficiency
- Recommendations
 - Apply smaller pieces from the intensive research
 - Expand them to the broader picture
 - Nitrogen Utilization Efficiency
 - Managed Nitrogen to produced the greatest amount of product
 - Optimize Profit and Resource Utilization
 - Minimize Risk to the Environment
 - Develop Best Management Practices (BMPs)

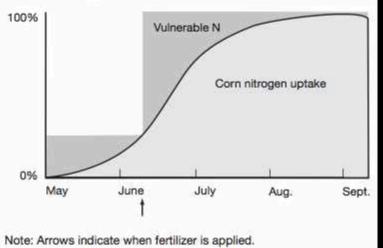

Nitrogen uptake and Distribution in Corn


230 bushel Ac⁻¹ corn crop

Adapted from Ross Bender, Corn Nutrient uptake and partitioning, Illinois Crop Physiology, University of Illinois. <u>http://cropphysiology</u>. Cropsci.illonois.edu/research/ Nutrient uptake.html

Applied N vs N uptake




- The longer nitrate/ammonium is in the soil the more vulnerable it is to loss.
- Manage N fertilizer to reduce its exposure to potential losses.

Adapted from Nitrogen Fertilization Of Corn, Penn State Extension Agronomy Facts 12. <u>http://extension.psu</u>. edu/cmeg/facts/agronomy-facts-12 Figure 2. Relative vulnerability of applied N to loss by leaching and denitrification. There is less vulnerability to loss with delayed application.

A. All N applied preplant

- How do we protect the N during that vulnerable period?
- What are the risks?
 - Leaching
 - Denitrification
 - Volitilization
 - Immobilization
- Use BMPs in terms of source, rate, and timing of applications
 - Consider your soil, location and climate
 - Soil Test
 - Adequate soil incorporation
 - Spring N applications
 - Fall applications:
 - < 50° F temps
 - Ammonical Fertilizers
 - Urease or Nitrification inhibitors
 - Split applications
 - Applies N at beginning of rapid uptake phase

In-Season N in HRSW

N timing	Grain yld	Test Wt.	Protein
	Bu/ac	Lbs/bu	%
Preplant	59.8	60.5	15.6
Preplant+Postplant	57.4	60.7	15.3
Postplant	59.1	60.7	15.1
Lsd (0.05)	NS	NS	0.4

- 100 lbs. N: all preplant was urea incorporated prior to plant; all postplant was 28% through stream nozzles. Preplant + Post plant: 50:50
- Consistent with earlier work in NW Minnesota (Lamb and Rehm)
- In-season N application: Must have moisture in the application zone for N to be effective

Endres, Schatz, and Maine. 2005. HRS wheat variety response to N application timing and seeding rate. www.ag.ndsu.edu/archive/carringt/05data

In-Season N in Corn

Time of Application		Year/Site		
Preplant N	Sidedress N	1991	1992	
N rate (lbs N /Ac)		Waseca Co.	Blue Earth Co.	
0	0	84	77107.0	
60	0	143	144	
30	30	161	141	
90	0	158	156	
30	60	157	137	
120	0	165	164	
30	90	182	153	
Advantage of Split-N		+11	-11	

Rainfall was 56% above normal in 1991

Adapted from Randall et al., 2008. Best management practices for nitrogen use in South-Central Minnesota. Univ. of Minn. Extension #08554

Summary

- Allot of work has been done on nitrogen
 - Current BMPs reflect our current state of knowledge
- Still more to do.
 - Ever changing dynamic of our crop production system
- Must always be thinking about:
 - Grower profitability
 - Resource utilization
 - Environmental preservation/protection