MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH

Agronomy with \$3.00 Corn Jeff Coulter - Extension Corn Specialist coult077@umn.edu

z.umn.edu/corn

Overview

- Seeding rates
- N rates
- Hybrid selection
- Planting date
- Stand establishment
- Crop rotation

Be an economist; pay attention to details

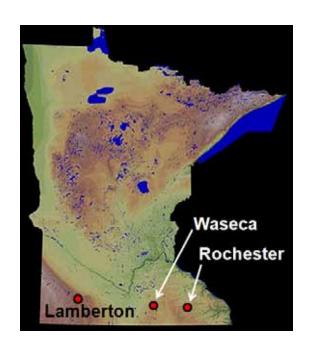
- Control costs without impacting yield
- Conduct simple on-farm tests to assess inputs
- Be timely with field operations
- Do not overlook the basics
 - Hybrid selection
 - Crop rotation
 - Stand establishment
 - Weed control

Growers are adopting higher seeding rates

- No or little yield penalty for too high of seeding rate
- Optimum seeding rates tend to be higher on high productivity soils
- Higher seeding rates can sometimes result in higher yields when favorable growing conditions

Do higher seeding rates require more N?

- Higher seeding rates used to target higher yields
- P & K fertility based on yield goal
- In trials that had high yields & high economic optimum seeding rates, high N fertilizer rates were used


From Lee & Tollenaar (*Crop Science*, 2007)

Seeding rate x N rate study

- Questions addressed:
 - What are the optimum seeding rates in high-yield environments?
 - Do higher seeding rates require more N?
 - What are the maximum corn yields that are possible?
 - How do these vary among growing environments?

Seeding rate x N rate study

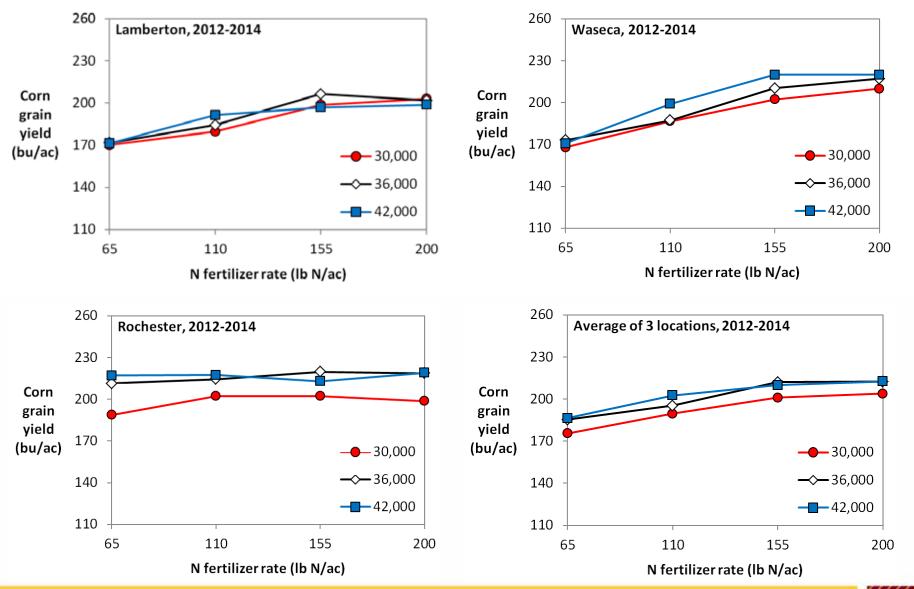
Location	Soil series
Lamberton	Normania loam
Waseca	Nicollet clay loam
Rochester	Port Byron silt loam

Managed for maximum yield:

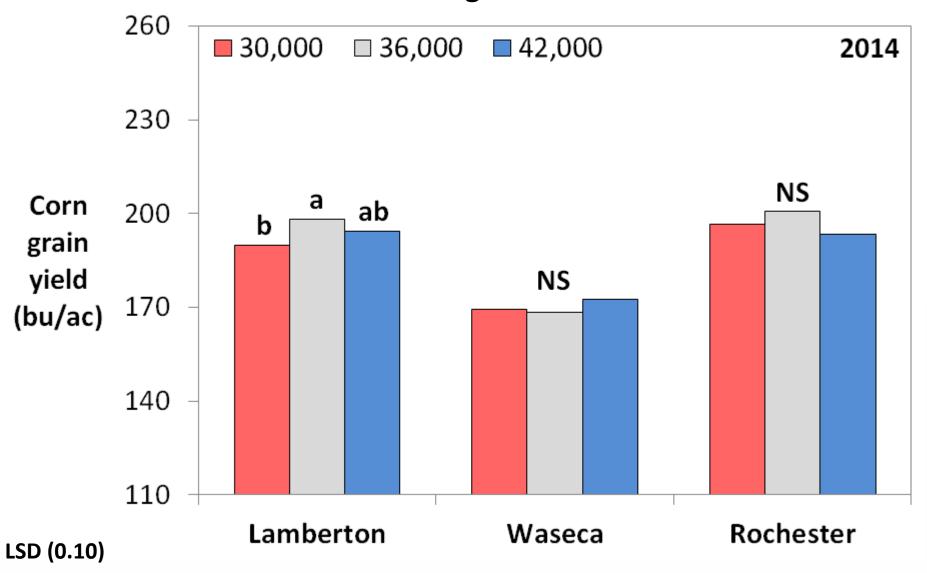
- Corn followed soybean; spring field cultivation
- Soil fertility (excluding N) managed for 250 bu/ac
- Timely planting with 10-34-0 in-furrow
- 103-day hybrid (DKC53-78RIB BLEND)

Seeding rate x N rate study

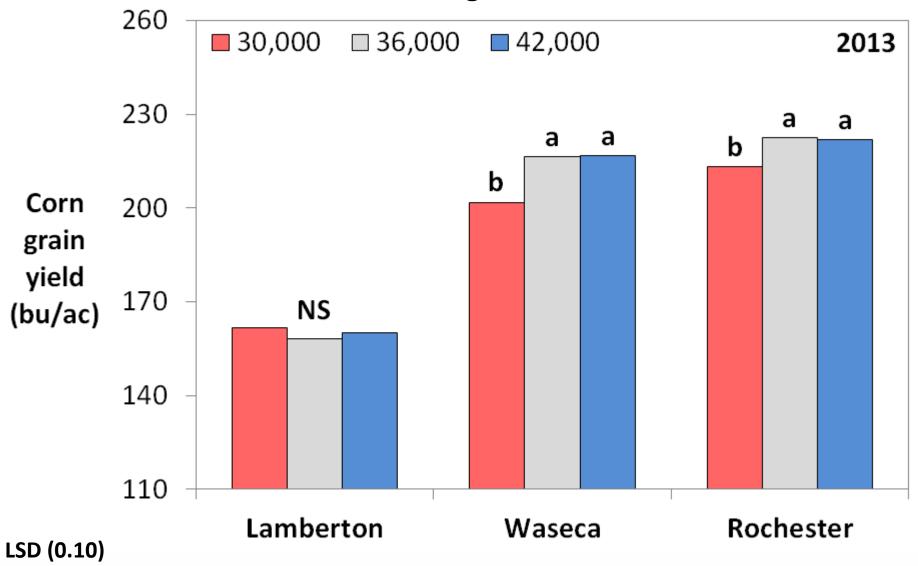
- 3 seeding rates (30,000, 36,000, 42,000 seeds/ac)
- 4 N fertilizer rates (65, 110, 155, 200 lb N/ac)


N fertilizer applied (lb N/ac)						
		_ •	_	Sideress		
	Preplant	Preplant	Starter	at V6		
Total	MAP	urea	(10-34-0)	(28-0-0)		
65	10	10	5	40		
110	10	55	5	40		
155	10	100	5	40		
200	10	145	5	40		

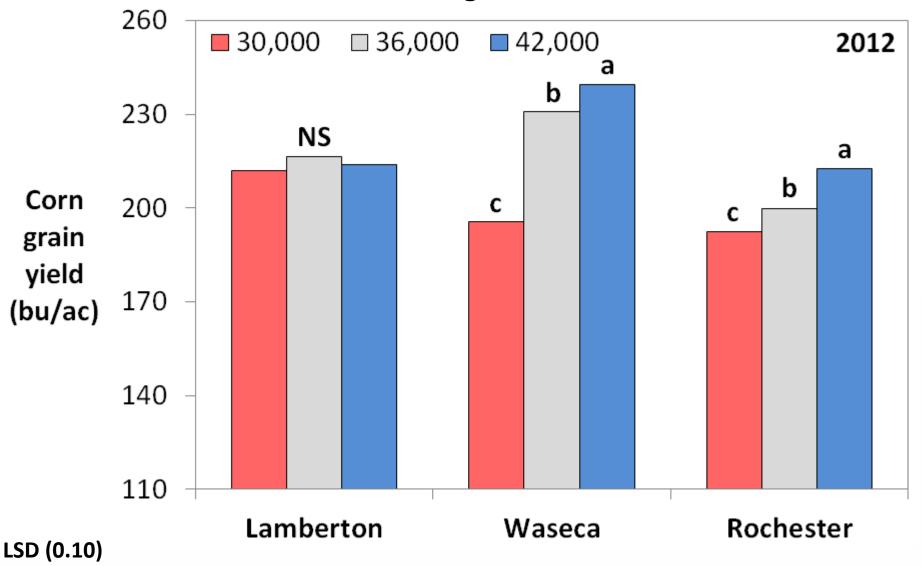
		Mo	nthly total i	rainfall (inch	nes)
Year	Location	May	June	July	August
2012	Lamberton	10.3	1.3	0.7	3.1
	Waseca	5.7	4.3	2.1	1.5
	Rochester	4.5	4.3	3.8	1.6
2013	Lamberton	4.2	5.3	0.4	1.8
	Waseca	6.5	6.7	5.3	2.1
	Rochester	7.6	4.2	2.8	2.8
2014	Lamberton	1.8	7.4	1.1	3.7
	Waseca	2.9	12.9	1.2	3.2
	Rochester	1.5	5.9	1.4	5.1



High seeding rates did not require more N



Averaged across N rates



Averaged across N rates

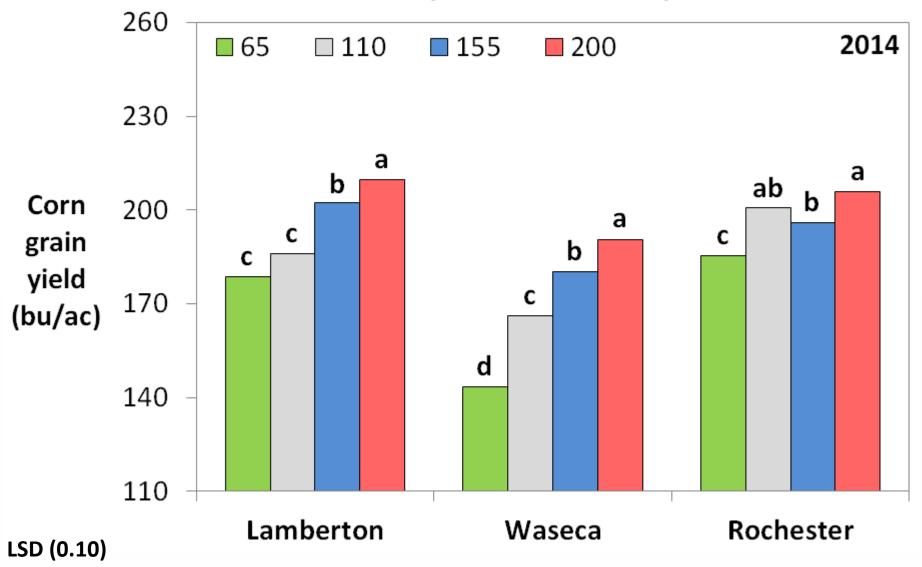
Averaged across N rates

Return over direct costs (\$/acre)

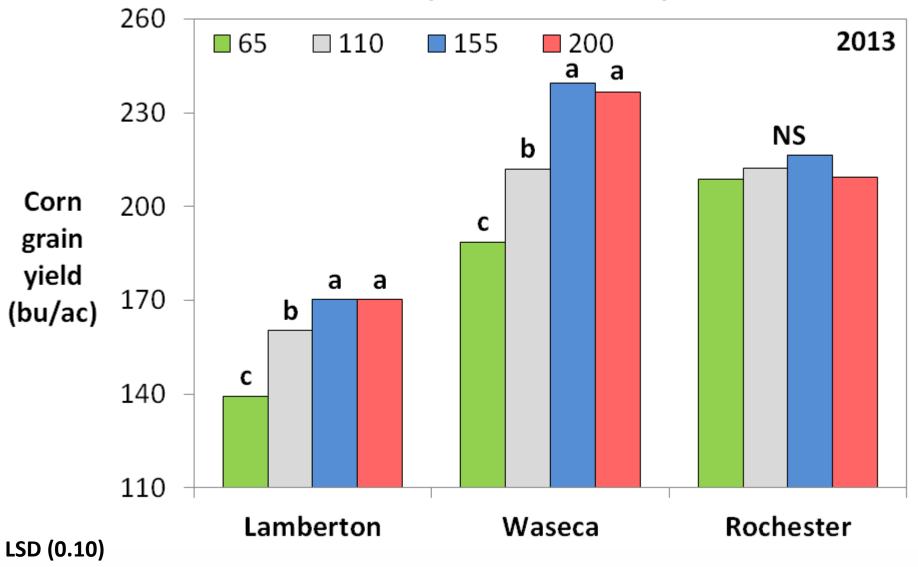
Averaged across N rates

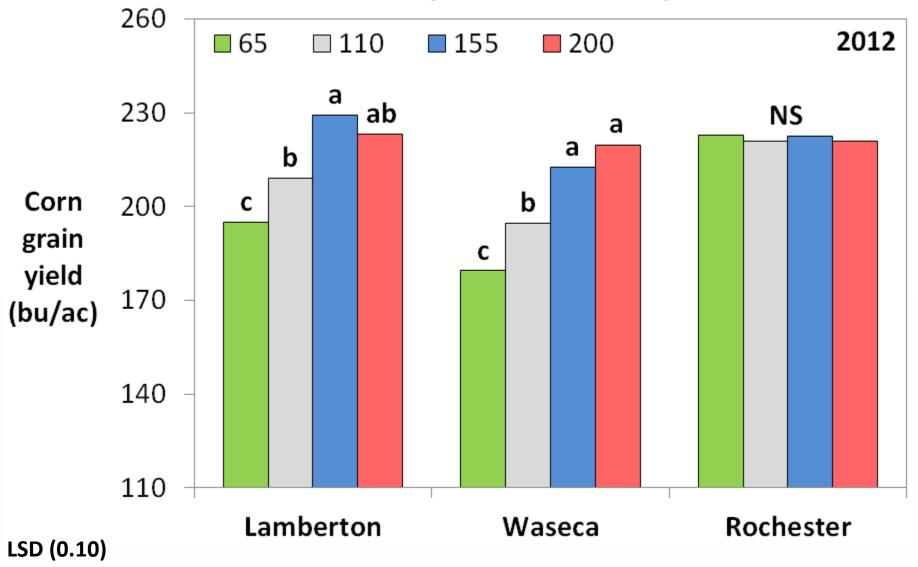
Location	Year	30,000	36,000	42,000
Lamberton	2012	591	585	556
	2013	415	382	368
	2014	513	522	487
Waseca	2012	522	527	551
	2013	595	606	584
	2014	442	417	410
Rochester	2012	533	635	645
	2013	555	585	565
	2014	537	529	484

\$3.50/bu


\$280/80,000 seeds

\$0.35/lb N


LSD (0.10)


Averaged across seeding rates

Averaged across seeding rates

Averaged across seeding rates

Return over direct costs (\$/acre)

Averaged across seeding rates

Location	Year	65	110	155	200
Lamberton	2012	534	567	622	586
	2013	339	397	416	400
	2014	477	487	528	538
Waseca	2012	480	517	564	573
	2013	512	578	659	632
	2014	353	418	451	471
Rochester	2012	632	609	599	578
	2013	582	579	577	537
	2014	500	538	506	525

\$3.50/bu \$280/80,000 seeds \$0.35/lb N LSD (0.10)

Lamberton, MN

Difference compared to 36,000 seeds/ac + 155 lb N/ac

Year Year	Seeding rate seeds/ac	N rate lb N/ac	Yield bu/ac	Revenue at \$3.50/bu	Input costs \$/ac	Net return
2012	42,000	155	-17	-60	21	-81
	42,000	200	-22	-77	37	-114
2013	42,000	155	-14	-49	21	-70
	42,000	200	-4	-14	37	-51
2014	42,000	155	3	11	21	-10
2014	42,000	200	3	11	37	-26

\$280/80,000 seeds

\$0.35/lb N

Waseca, MN

Difference compared to 36,000 seeds/ac + 155 lb N/ac

Year Year	Seeding rate seeds/ac	N rate Ib N/ac	Yield bu/ac	Revenue at \$3.50/bu	Input costs \$/ac	Net return
2012	42,000	155	10	35	21	14
	42,000	200	11	39	37	2
2013	42,000	155	13	46	21	25
	42,000	200	2	7	37	-30
2014	42,000	155	6	21	21	0
	42,000	200	16	56	37	19

\$280/80,000 seeds

\$0.35/lb N

Rochester, MN

Difference compared to 36,000 seeds/ac + 155 lb N/ac

Year Year	Seeding rate seeds/ac	N rate lb N/ac	Yield bu/ac	Revenue at \$3.50/bu	Input costs \$/ac	Net return
2012	42,000	155	6	21	21	0
	42,000	200	7	25	37	-12
2013	42,000	155	-2	-7	21	-28
	42,000	200	-6	-21	37	-58
2014	42,000	155	-24	-84	21	-105
	42,000	200	-3	-11	37	-48

\$280/80,000 seeds

\$0.35/lb N

Summary – seeding rate x N rate study

- Higher seeding rates never required more N
- Response to seeding rate varied
 - No yield increase with rates above 30,000 seeds/ac in 4 of 9 environments
 - Yield with 36,000 seeds/ac among the highest in 7 of 9 environments
 - 42,000 seeds/ac maximized yield & net return in 2 of 9 environments

Summary – seeding rate x N rate study

- Response to N rate varied
 - Greater net return with 200 lb N/ac than 155 lb N/ac in 2 of 9 environments (both in 2014)
- When compared to 36,000 seeds/ac + 155 lb N/ac, 42,000 seeds/ac alone or with an extra 45 lb N/ac increased net return only at Waseca

Summary – seeding rate x N rate study

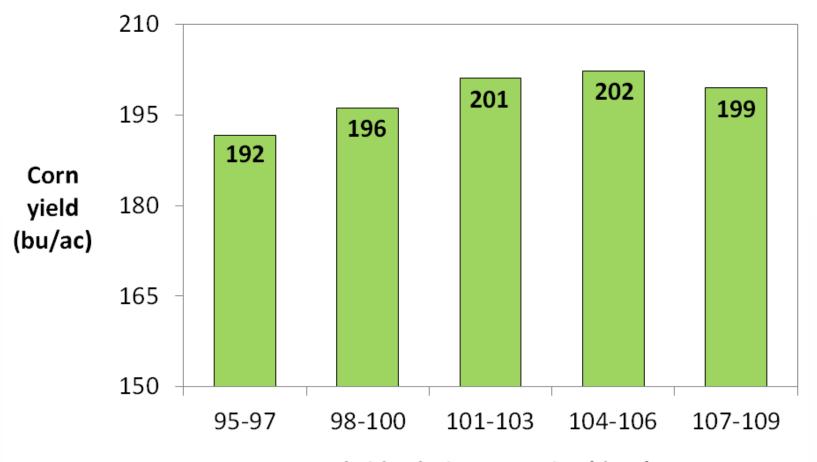
 In above-average fields where corn was managed for maximum yield, increases in yield with above-normal seeding rates & N rates were limited in frequency & magnitude

 Weather can have a much larger impact on yield than agronomic inputs

Have a 'Plan B' & 'Plan C' in case the weather causes challenges

Yield differences among hybrids are huge

Lamberton, MN

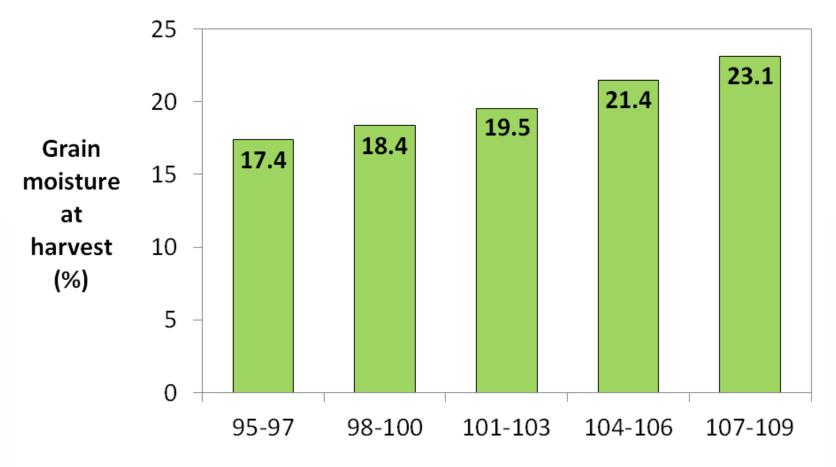

(95 - 109 day RM)

	Hybrid	Top 10	Bottom 10	Difference
Year	entries	entries	entries	(high - low)
	number	bu/a	acre	bu/acre
2008	149	255	186	69
2009	117	224	159	65
2010	96	219	162	57
2011	81	209	172	37
2012	94	237	185	52
2013	84	213	165	48

Early-maturity hybrids often yield less

Lamberton, MN (2008-2013)

81-149 hybrid entries/year



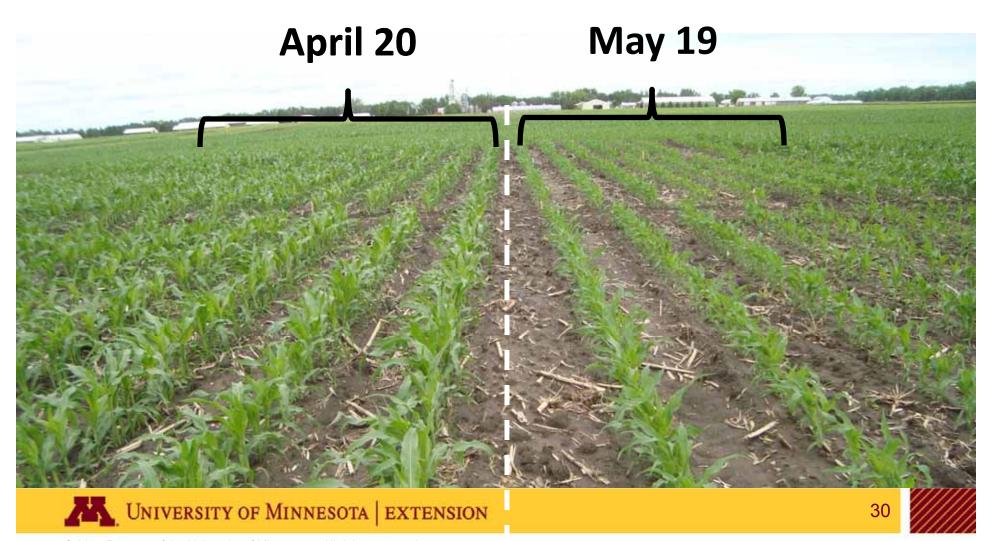
Balance yield potential with harvest moisture

Lamberton, MN (2008-2013)

81-149 hybrid entries/year

Hybrid relative maturity (days)

Planting date	Lamberton, MN (1988-2003)	Lamberton, Morris, & Waseca, MN (2009-2011)
	grain yield, S	% of maximum
April 20	99	98
April 25	100	99
April 30	100	100
May 5	99	100
May 10	98	99
May 15	95	98
May 20	92	95
May 25	87	92
May 30	82	89
June 4	76	84
June 9	69	79

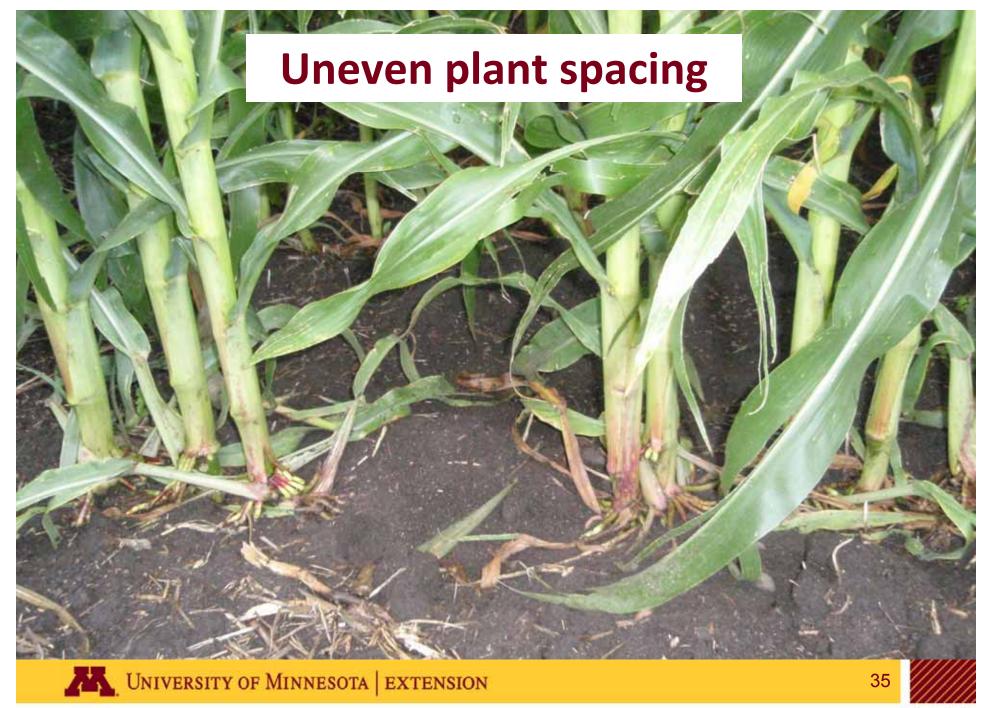

1988-2003 data from Bruce Potter & Steve Quiring

Planting date study - Morris, MN (2010)

Photo on June 14

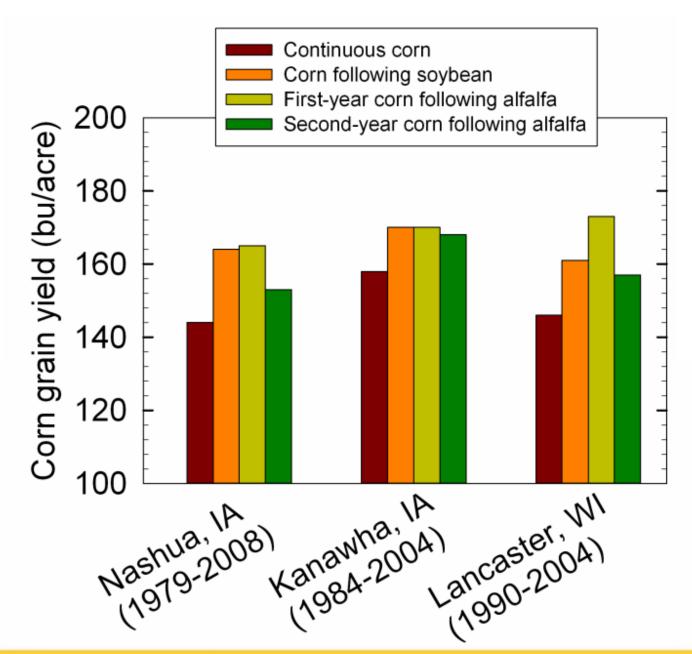
Uniform emergence is critical

Plant that was 2 leaf stages behind is late to silk


Lamberton, MN (32,000 plants/ac)

	Avg. of all	Early	Late
Emergence pattern	plants	plants	plants
	— Yield	(% of co	ntrol) —
Uniform	100%		
1 leaf-stage delay on	94%	107%	80%
every other plant	3470	107/6	80%
2 leaf-stage delay on	83%	118%	49%
every other plant	0370	11070	4570
Every other plant missing	73%		

From Ford & Hicks, 1992 (Journal of Production Agriculture)


Uneven spacing study – 2 locations in Ontario, 2000 & 2001

Plant	Avg. of all	Plant next to	Avg. of plants in double or
spacing	plants	gap	triple
	—— ү	ield (% of	control) ——
Uniform	100%		
1 double in 6	99%	110%	92%
1 triple in 6	98%	110%	91%

From Liu et al., 2004 (Agronomy Journal)

Crop rotation increases yield potential

Mallarino & Ortiz-Torres (2006) Stanger & Lauer (2008)

12 comparisons in northern & central Illinois (2004-2007) silt loam & silty clay loam soils

Crop and rotation		Yield (bu/ac)
Corn	Corn-soy	197
	1st-year corn in corn-corn-soy	196
	2nd-year corn in corn-corn-soy	184 (-7%)
	Continuous corn	178 (-10%)
Soybean	Corn-soy	54.9
	Corn-corn-soy	58.3 (+6%)

From E.D. Nafziger (Illinois Agronomy Handbook, 2009)

Be an economist; pay attention to details

- Control costs without impacting yield
- Conduct simple on-farm tests to assess inputs
- Be timely with field operations
- Do not overlook the basics
 - Hybrid selection
 - Crop rotation
 - Stand establishment
 - Weed control

University of Minnesota | Extension Driven to Discover**

Thank you!

© 2014 Regents of the University of Minnesota. All rights reserved.

The University of Minnesota is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this PowerPoint is available in alternative formats upon request. Direct requests to 612-624-1222.

