What's New with Micronutrients?

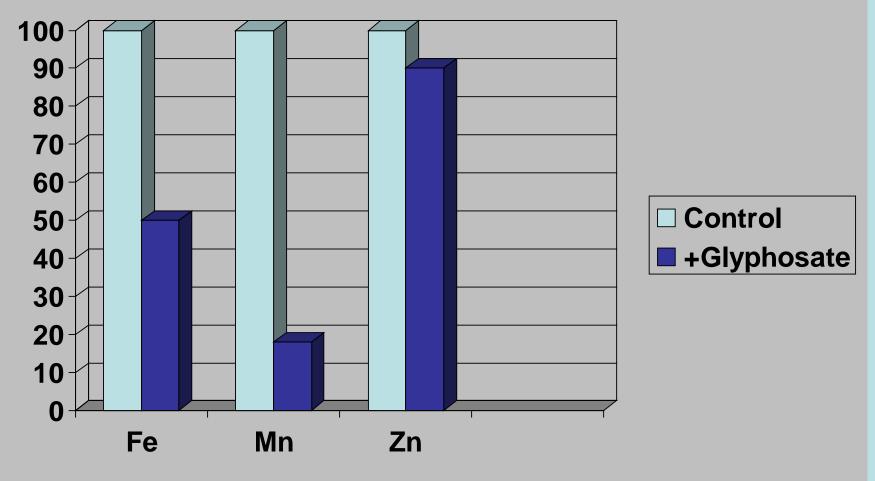
Daniel Kaiser Assistant Professor Department of Soil, Water and Climate

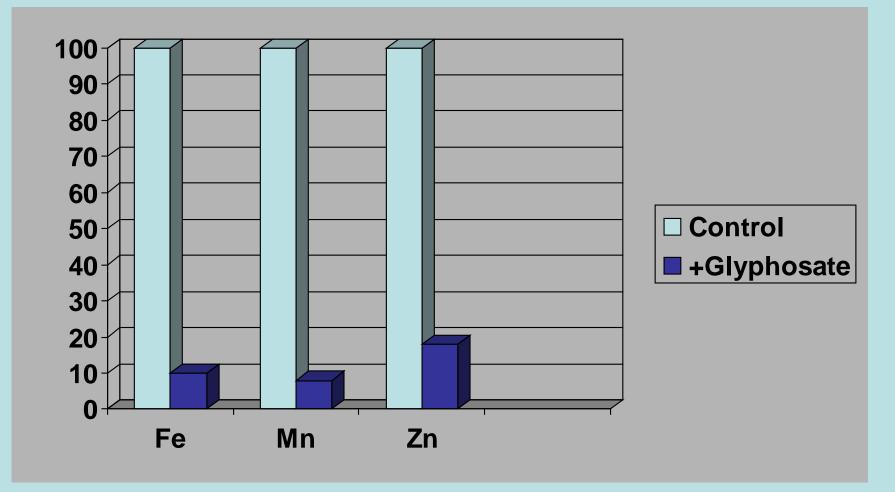
U of M Twin Cities 612-624-3482 dekaiser@umn.edu

UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

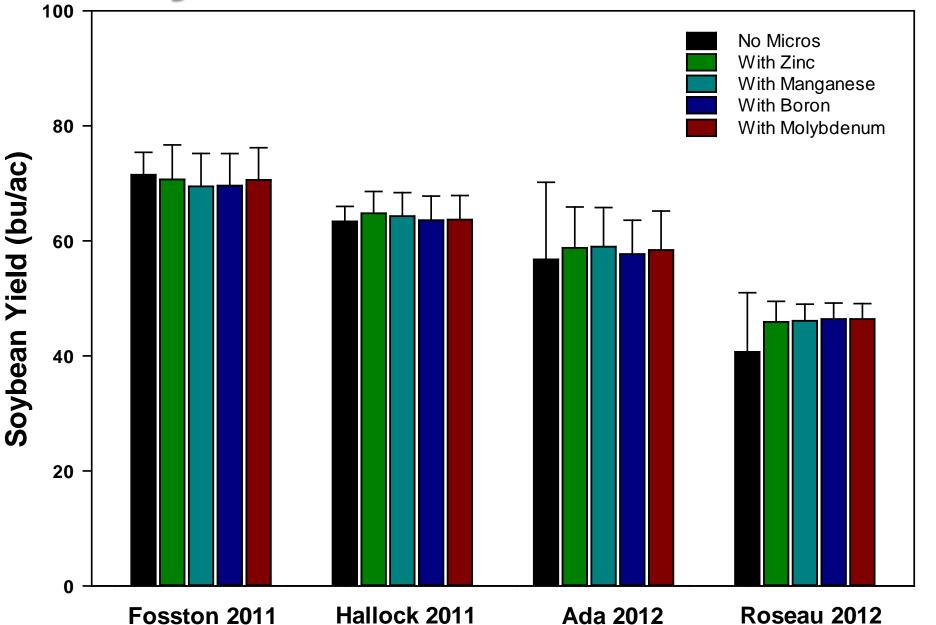
Situation

- With high commodity prices the tendency is to chase these small, ~2 bu/ac yield increases
- Micros are being increasingly scrutinized


 We don't know much about them
 Past research has shown no response
- Research has shown a link between Glyphosate tolerant soybean and reduced micro uptake and translocation


UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Purdue work (Huber) Root uptake (%)


Glyphosate at 2.5% of recommended rate.

Purdue work (Huber) Translocation to shoot (%)

Glyphosate at 2.5% of recommended rate.

Soybean Micronutrient Yield

MEZ for SB Studies 2011-12

Table 3. Soybean MEZ yield summary by treatment for each location in 2011 and 2012.

	Treatment						
Site	Chk	N	N+P	N+P+S	MEZ	P>F†	
	bu/acbu/ac						
Hallock '11	57	60	60	58	58	0.50	
Lamberton '11	52	52	50	54	51	0.42	
Rock Dell '11	35	33	35	32	33	0.84	Nitrogon
Warroad '11	41c	49a	47ab	51a	44bc	0.02	Kitrogen
Waseca '11	51	50	52	53	52	0.38	
Crookston '12	32	31	31	31	30	0.72	
Hallock '12	51	50	46	45	49	0.81	
Lamberton '12	51	49	49	50	49	0.25	Nitrogen
Rochester '12	48b	51a	53a	52a	51a	0.05	Kinogen
Rock Dell '12	41	45	45	43	44	0.43	
Waseca '12	49b	50b	54a	55a	53a	0.01	Phosphorus

⁺ Treatments are significantly different when $P \leq 0.05$. Numbers followed by the same letter are not significantly different

UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

lowa early season foliar fertilization research, 1994-1998

Trial set	No. of site- years	Site- years with positive yield response	Positive response frequency %	Avg. positive yield response %	Site- years with negative yield response	Negative response frequency %	Avg. negative yield response %
3-18-18	21	6	29	7	1.//	5	6
3-18-18 strip trial	8	1	13	1	/-		- /
N-P-K variou	s 27	3	11	8	3	11	10
N-P-K variou + micros	^s 18	2	11	7		-	- /
All trials	74	12	16	6	4	5	9

Mallarino et al., 2005 (Better Crops, vol. 89)

Summary on Soybean

- We have not seen any nutrients become more deficient due to higher commodity prices
- Manganese is not any more deficient now than before
- We still have some questions for SB, but I do not think the probability of a response is high
- Gyphosate has not tied up all the micros!

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Manganese (Mn)

- Deficient soils are the problem
- Research at Purdue (Huber, 2003) found a relationship between glyphosate resistant soybeans and Mn deficiency in the plant
- Glyphosate resistant soybeans appeared to have problems in Mn uptake and efficiency in the plant
- Plant were exhibiting "Glyphosate Flash" a few days after application
- Problem was worse after over application of glyphosate
- Problem is typified by interveinal chlorosis on new leaves
- Foliar applied or Mn broadcast has been looked at to correct deficiencies
- Actual yield loss from this problem has been debated
 - Application of Mn has been shown to increase yields in irrigated soybeans (Kansas)
 - Other research has not shown a positive response to Mn fertilization (Ebelhar, 2007 Illinois)

Boron Toxicity in Soybeans 5 Ib/ac B broadcast preplant Sandy soil - Dry spring

Corn Micros Data 2011-2012

Table 2. Corn yield (@ 15.5%) summary by treatment for each location.							
	Treatment						
Site	Chk	-Zn	-Mn	-Cu	-B	All	P>F†
			bu	ı/ac			
Oklee	105	117	109	116	113	109	0.26
Rochester '11	243	238	241	227	237	233	0.30
Staples	189c	191bc	197ab	191bc	202a	199ab	0.03
Westport	196	193	194	199	194	189	0.69
Gaylord	198	189	185	191	184	199	0.12
Montgomery	168	179	191	179	191	190	0.18
Rochester '12	141	152	158	157	155	152	0.74
† Treatments are significantly different when P<0.05.							

2009-2010 Zinc for Corn: Red River Valley

	Cc				
Zinc Rate	0	5	10	15	LSD
Polk '09	171	164	169	167	ns
Mahnomen '10	168	169	179	191	13
Red Lake '10	211	199	195	194	ns
Marshall '10	134	132	143	135	ns

**Soil test Zinc (DTPA): Polk '09 1.36ppm; Mahnomen '10 0.37 ppm; Red Lake '10 0.65 ppm; Marshall '10 0.55 ppm.

***Zinc rates applied as broadcast Zinc Sulfate (36% zinc)

Corn

- Targeting zinc is the best approach
 Yield increase is still not guaranteed
- Corn can be sensitive to copper deficiency
 Right now I'm not convinced we see Cu
 - deficiency unless on high organic soils.
- I don't trust the boron soil test
 I don't think B is a problem for corn
- Corn should not be sensitive to manganese deficiency

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Zinc Deficiency

Sulfur Deficiency

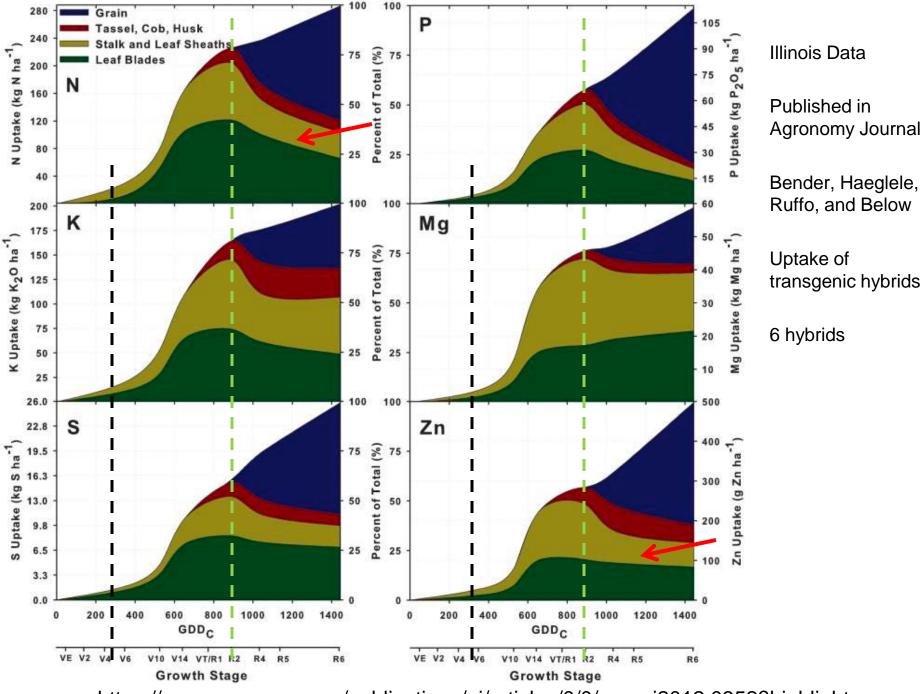
Even with high commodity prices you can lose money! –Foliar Ex.

- Say soybeans priced at \$20 per bu
- Say you get a response 10% of the time for SB for foliar
- Say the average response is 2 but
- Fertilizer treatment is \$25/ac on 1500 acres
- Total cost: \$25 * 1500 = \$37,500
- Return: 1500 * 0.1 * 2 * \$20 = \$6,000

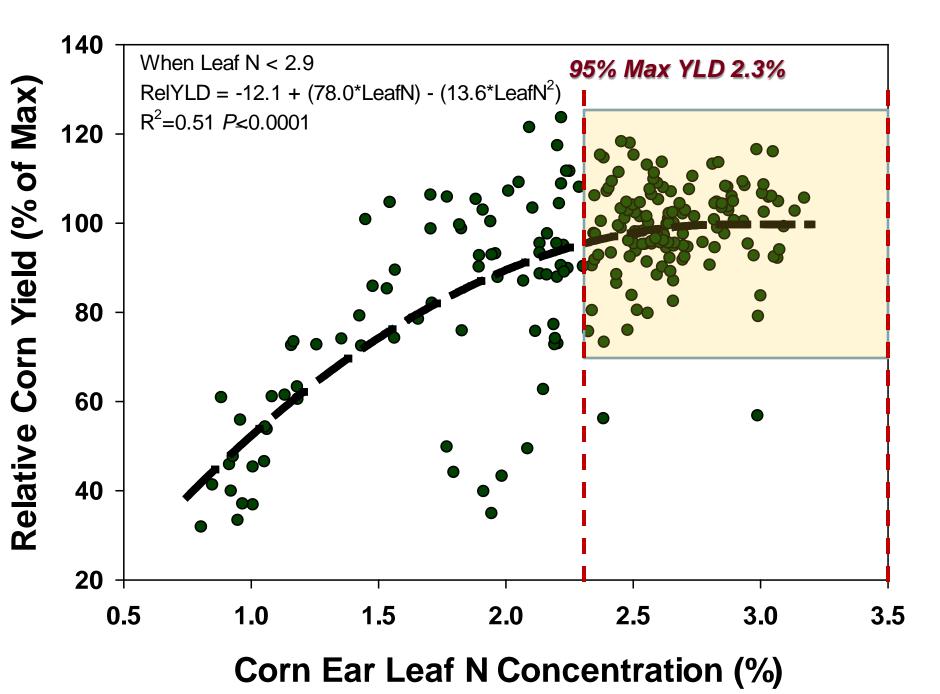
UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

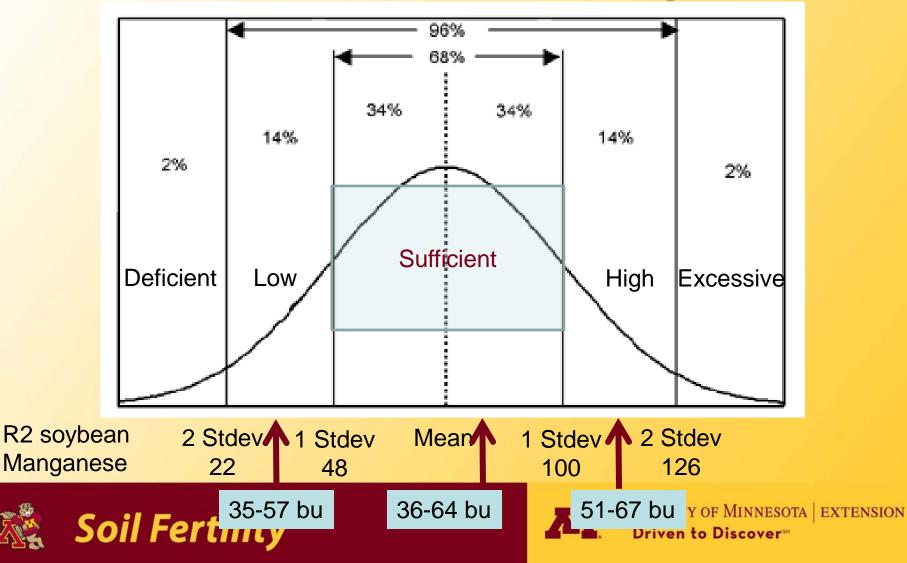
Micronutrients

- Since we seldom see issues with micronutrients therefore we have trouble identifying critical levels using the sufficiency approach
- Best option is to assume everything is okay and use the mean values and standard deviation of mean
- Gives a sort of sufficiency range


UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

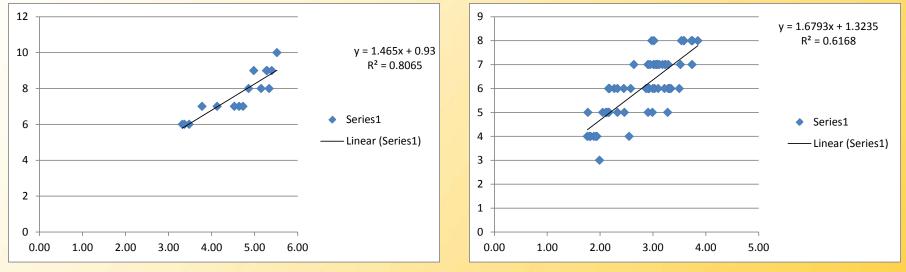
Tissue Testing


- Do we know if the current data actually has any yield data to back it up
- Responses are not as likely to some nutrients, where did the sufficiency data come from?
- When do you take the sample, early in the season the total amount of nutrients taken up is low
- Micros are immobile, what does that mean for tissue concentration and nutrient placement and timing?

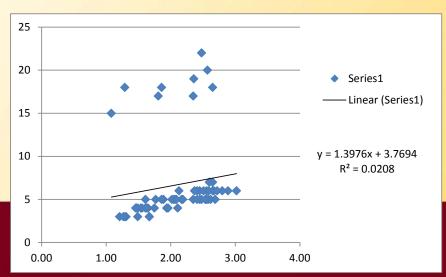


https://www.agronomy.org/publications/aj/articles/0/0/agronj2012.0352?highlight=

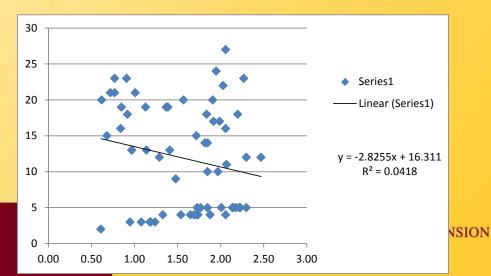
Normal Distribution Curve How it Relates to Plant Analysis?



Copper vs. Nitrogen in Flag Leaves


1 location 4 Varieties and 4 N rates: 2010

Pre-Anthesis


Anthesis

Anthesis + 10d

Hybrid Differences - 2012 6 Southern MN locations – 34 hybrids

Hybrid	N (%)	P (%)	K (%)	Zn (ppm)
Agrigold 6252 VT3 Pro	2.69	0.24	1.39	15.9
Dairyland DS9501 SSX	2.83	0.30	1.36	16.9
DKC 48-12	2.86	0.31	1.59	18.7
DKC 52-04	3.09	0.27	1.36	18.7
G2 5X-0004	2.80	0.33	1.38	14.6
Pioneer 0062 XR	2.64	0.28	1.59	15.6
Pioneer 9917 AM1	2.79	0.29	1.58	17.9
Renk RK629VT3P	2.84	0.25	1.66	16.4
Titan Pro X2M00-SS	2.84	0.25	1.47	18.3
Wensman W9288 VT3PRO	2.85	0.25	1.43	17.8

Hybrids represent a subset of the 34 hybrids sampled, LSD=0.30 from analysis of all 34 hybrids

Soil Fertility

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Location Differences - 2012

Location	N (%)	P (%)	K (%)	Zn (ppm)	Precip. Jun-Jul
Hutchinson	2.61(11)	0.30(44)	2.11(247)	17(3.7)	8.52
Lamberton	2.74(29)	0.22(36)	1.14(151)	17(0.9)	2.00
Morris	2.90(12)	0.33(12)	1.52(119)	16(1.5)	4.28
Rochester	3.03(9)	0.28(22)	1.25(138)	18(1.0)	6.50
Rosemount	3.13(31)	0.25(10)	1.51(156)	18(1.3)	10.69
Waseca	2.75(6)	0.25(9)	1.51(177)	19(0.8)	5.32
Crookston	3.07(67)	0.26(10)	1.78(143)	18(0.4)	5.41
Fergus Falls	2.75(45)	0.24(18)	0.95(129)	21(1.5)	7.10*
Staples	3.22(14)	0.33(36)	2.52(100)	22(6.8)	9.63*

Number in parentheses represents the soil test value. *Precipitation is given for the nearest weather station

UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

Does Low = Deficient Corn Zn Study Example – 4 locations

Zinc Rate (Ib/ac)			Zinc Rat	e (Ib/ac)	
0	15		0	15	
Yield (bu/ac)			Ear Leaf Zn (ppm)		
201	206		25	31	
185	193		19	27	
207	212		12	12	
121	124		19	26	

** Data averaged across 3 sources of zinc

- Zn soil tests were >0.75
- No statistical yield response at any location
- Zn levels were marginal to low at most sites when no Zn was applied

Tissue Sampling

- Tissue sufficiency levels were not made with the intention of using them for predicting where fertilizer is needed
- Early season samples are worthless, especially if you are only taking one sample from a field
- Chances are the probability is the same that a treatment will work even if you have a tissue sample

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Micronutrient Deficiency Sensitivity

- Zinc corn and edible beans
- Boron alfalfa
- Copper small grains, corn?
- Chloride small grains
- Iron soybeans
- Manganese reported effects in soybeans, no data in MN
- Molybdenum soybeans

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover™

Thank You Questions?

Daniel Kaiser University of Minnesota 612-624-3482

<u>dekaiser@umn.edu</u>

http://www.extension.umn.edu/nutrientmanagement/index.html

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴