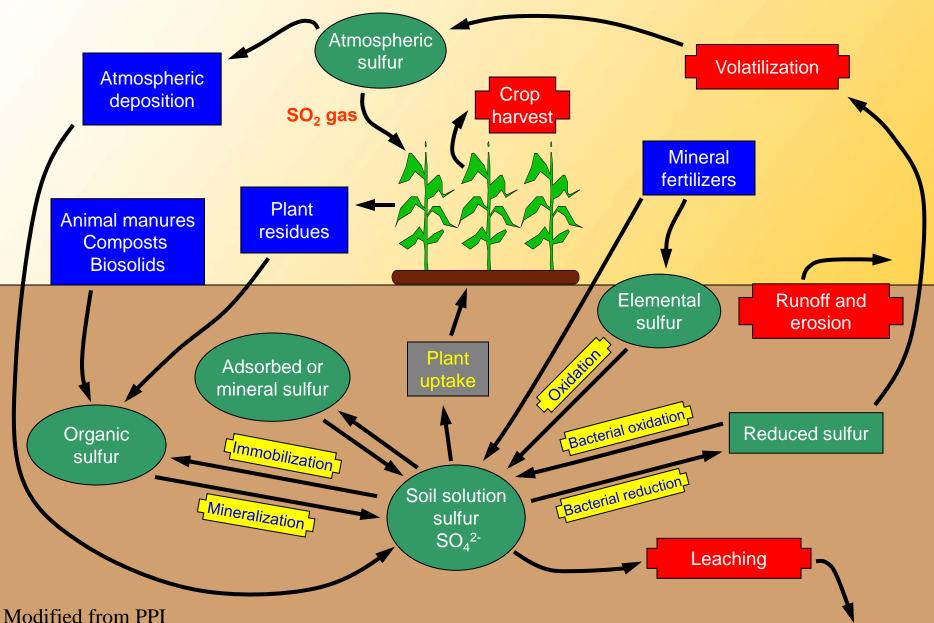
Sulfur 101

Daniel Kaiser Assistant Professor Department of Soil, Water and Climate

U of M Twin Cities 612-624-3482 dekaiser@umn.edu

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]


Learning Objectives

- Know the basic forms and functions of S in plants
- Learn the major sources and forms of S in soils
- Understand the factors affecting S transformations and S cycling
- Be able to describe how S transformations and S cycling determine S availability to plants and S transport in the environment

The Sulfur Cycle Transformation

(Nutrient pool)

Input to soil

Loss from soil

Forms of S Absorbed by Plants

- Some absorption of SO₂ by leaves
 - High concentrations are toxic
- Most S taken up by roots as sulfate (SO₄²⁻)
 - < 10% of total soil S is SO₄²⁻
 - Except in arid climates
- Roots can also take up thiosulfate (S₂O₃²⁻)
 - May be energetically advantageous
 - Less energy for S reduction

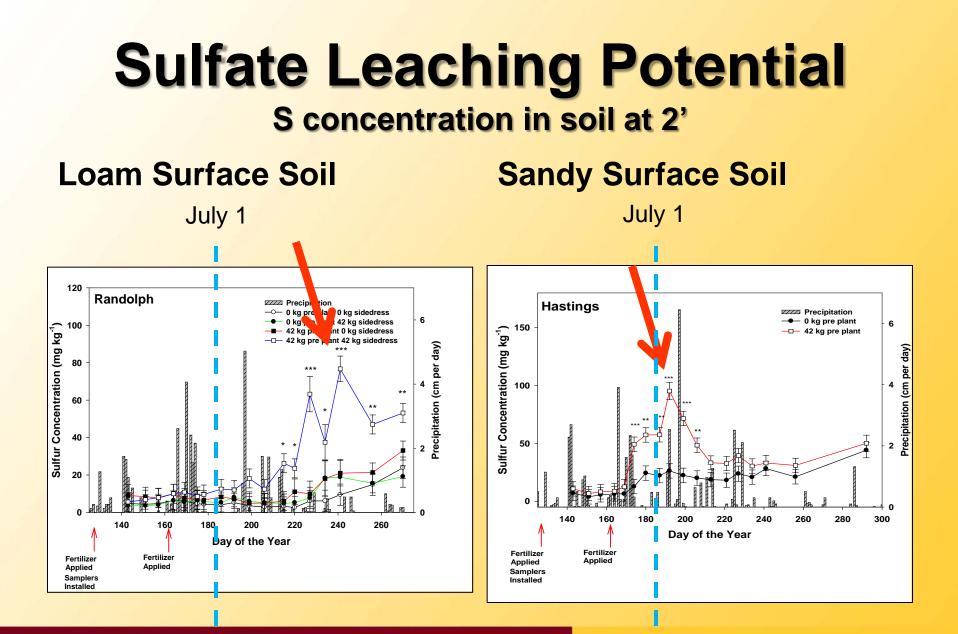
S Supply to Roots

- SO₄^{2–} moves in soil by both mass flow and diffusion
- Usually supplied to plant roots by mass flow
- Diffusion important in low S soils
 - Sandy, low organic matter soils

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴⁴

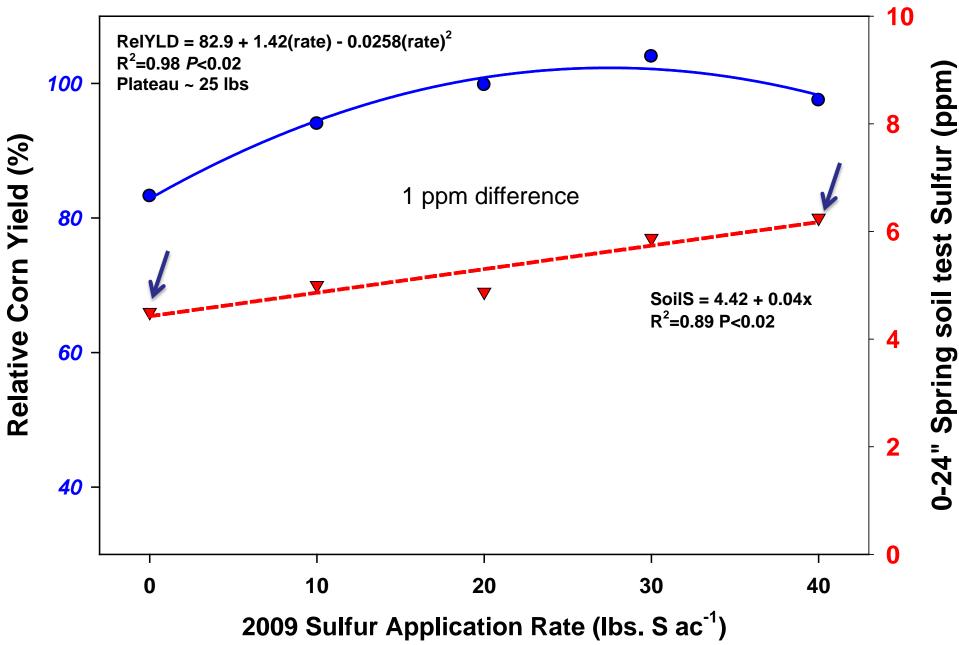
Forms and Functions of S in Plants

- S required by plants in relatively large amounts
 - Less than N and K
 - Similar to P, Ca, Mg
 - 0.1 0.5% in plant tissue (dw basis)
 - 200 bu/A corn accumulates ~ 25 lb S/A (60% in grain)
- Volatile compounds (secondary compounds)
 - Responsible for characteristic tastes and odors
 - Onion and crucifer (cabbage) family plants
- Essential amino acids
 - Cystine, cysteine, and methionine
 - ~90% of S in plants is in proteins
 - Disulfide (-S-S-) bonds
- Synthesis of chlorophyll, coenzyme A
- Redox reactions
 - Ferredoxin (Fe-S protein)
 - N fixation, nitrate and sulfate reduction


UNIVERSITY OF MINNESOTA | EXTENSION ■. Driven to Discover[™]

S Mobility

- Somewhat Mobile in the Soil
- Relatively immobile in plant
 - Not readily translocated from older leaves to young growing points
 - Deficiencies usually occur first on upper, younger leaves
 - May also occur uniformly over entire plant
 - Pale green color



UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴⁴

Renville 2010 Data Corn Yield Data

Excess S

- Sulfate not directly toxic to plants or other organisms
- Can contribute to soluble salt problems

 Often a major anion in saline soils
- High SO₄² leaching can increase cation losses
- S environmental issues are not due to agriculture

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Sources of Soil S

- Organic matter decomposition
 - 90% of soil S is in organic form
 - Lower in arid soils
- Manure, compost, biosolids
- Adsorbed SO₄²⁻
 - Anion exchange, Fe- and Al-oxides, clays
- S minerals
 - Sulfate minerals in dry climates
 - Sulfides in anaerobic conditions
- Atmospheric deposition
 - Industrial activities
- S fertilizers

Mineralization - Immobilization

 Cycling of organic S similar to cycling of organic N and P

- Balance between mineralization and immobilization affected by C:S and N:S ratios of OM
 - C:N:S ratio ~120:10:1.4
 - Soil organic matter ~1% S

Residue Levels and Sulfur Response

- Does the type of residue matter?
- C:S ratios (source Soil Fertility and Fertilizers 7th ed.)
 - <200:1 mineralization</p>
 - 200-400:1 no change
 - >400:1 immobilization
- 2008 data crop stover
 - Albert Lea, MN R6 Corn: 333:1
 - Clarkfield, MN R6 Corn: 151:1
 - Lewiston, MN R8 Soybean: 123:1
 - Hanska, MN R8 Soybean: 125:1
 - Strathcona, MN Wheat: 286:1
 - Perley, MN Wheat: 291:1

Mineralization - Immobilization

- Organic matter decomposition
 - S release affected by same factors discussed for N, P, and OM decomposition in general
 - Activity of bacteria, fungi, and actinomycetes
 - Temperature, moisture, aeration
 - pH, nutrient content, residue incorporation, particle size, surface area

Adsorption - Desorption

- Adsorbed SO₄²⁻ is a labile S pool
 - Usually readily available
 - Replenishes (buffers) solution SO₄²⁻
 - S soil tests measure readily soluble and adsorbed sulfate
 - Ca-phosphate extraction
 - Only reliable for predicting S deficiency on sandy soils in MN

Adsorption - Desorption

- S adsorption similar to P adsorption, but held much less strongly
 – NO₃⁻ < SO₄²⁻ < H₂PO₄⁻
- Most important in highly weathered soils
 High adsorption potential
- May be important process in subsoils of other regions (higher clay content)

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Adsorption - Desorption

- Factors affecting adsorption capacity
 - Fe-, Al-oxides
 - Primary adsorption sites in many soils
 - Soil clay content
 - Higher for 1:1 clays
 - Soil pH
 - Adsorption greatest in acid soils
 - pH dependent charge, anion exchange
 - Very low at pH > 6.0

NIVERSITY OF MINNESOTA | EXTENSION

Precipitation - Dissolution

- Gypsum (CaSO₄) in arid climates
 - Co-precipitates with Ca-carbonates in calcareous soils
- Sulfides in anaerobic, waterlogged soils
 - H₂S precipitates as metal (Fe) sulfide minerals
 - Dissolution requires S oxidation
 - Acidifying
 - Process also occurs in acid mine drainage

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover⁵⁴

Oxidation - Reduction

- S exists in a number of oxidation states
 - From -2 to +6
 - S oxidation and reduction in soil are both microbially mediated processes
 - Readily oxidized in most agricultural soils
- SO₄^{2–} is the most oxidized form
 - Plants must reduce SO₄²⁻ for incorporation into organic compounds
 - Similar to NO₃⁻

Volatilization

- Volatile S losses
 - Products of microbial transformations in soil
 - Impact on soil fertility generally insignificant
- Volatile S additions
 - Atmospheric SO₂ from industrial activities
 - Sulfate deposition through rainfall
 - Contributes to acid rain
 - Significant source of S fertility in some areas

Fertilizer S Management

- Deficiencies
 - Sandy soils most often S deficient
 - Low OM
 - SO₄²⁻ leaching losses
 - Sensitive crops/plants
 - Alfalfa, clovers, corn, small grains
 - Turfgrass, potatoes, onions
 - Brassicas (cabbage, canola, forage types)

- May be favored with high residue

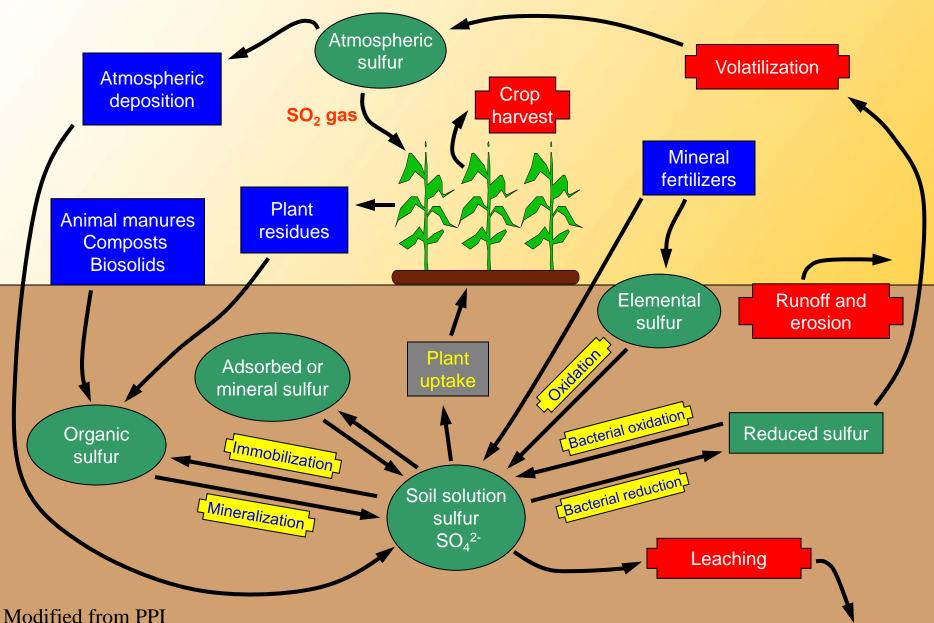
Fertilizer S Sources

- Dry Sources
 - Ca, K, NH4 sulfates
 - Elemental S
- Manure
- Liquid Fertilizer
 - Ammonium & potassium thiosulfate
 - 26% S and 17% S
 - Can be mixed with most other liquid fertilizers
 - Roots can take up thiosulfate (S₂O₃²⁻)
 - In soil, S₂O₃²⁻ readily split into one atom of S° and one molecule of SO₄²⁻
 - $S-S-O_3 \rightarrow S^\circ + SO_4^{2-}$

Sulfur Oxidation

- Elemental S (S°) used agriculturally for soil acidification
 - Also as an S fertilizer source
- Oxidation of elemental S
 - $-2S + 3O_2 + 2H_2O \iff 2H_2SO_4 \iff 4H^+ + 2SO_4^{2-}$
 - Acidifying reaction
 - Thiobacillus and other microbes
 - Favored at high soil temps ~35°C

Elemental Sulfur is Produced During the refining of oil and natural Gas


S and the Environment

- Reduced S can be a contaminant
 - Industrial emissions, acid mine drainage, acid mine spoils
- Contamination not caused by agriculture
 - Reclamation of acid soils can be an agricultural problem
 - Mining affected land
 - Drained coastal marsh land

The Sulfur Cycle Transformation

(Nutrient pool)

Input to soil

Loss from soil

Proposed Corn Sulfur Guidelines for Southern Minnesota

Broadcast sulfur to apply (lbs S per acre)			
	0-6" Soil Organic Matter		
Rotation	0-2	2-4	>4%
Corn-Corn	20-25??	15-20??	10-15†
Corn-Soybean	10-15??	10-15	0
Sandy Soils	25	25	25??

** ??, denotes where we have limited data on response and need more data

Thank You Questions?

Daniel Kaiser University of Minnesota 612-624-3482

dekaiser@umn.edu

http://www.extension.umn.edu/nutrientmanagement/index.html

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[®]