Nutrient Efficiency and Management Conference

February 15, 2012

Impact of Avail[®] and JumpStart[®] on Yield and Phosphorus Uptake of Corn and Winter Wheat in Kansas

> Nicholas C Ward University of Nebraska-Lincoln

Introduction

- The volatile price of fertilizer within the last five years has created interest to revisit common P fertility questions like fertilizer recommendations and fertilizer efficiency
- Current P recommendations are based on the Mehlich 3 soil test using a critical level of 20 mg kg⁻¹
- Management practices such and banding, stripping or starter applications with or close proximity to the seed are well documented methods of increasing application year P efficiency
- Two products, Avail and JumpStart, are currently being advertised and sold widely in Kansas as tools to enhance P uptake from native P supplies or applied fertilizers. Can enhancement products be a useful tool to achieve greater P efficacy?

Background on Products

- Avail is a product of Specialty Fertilizer Products
 - "a patented technology that surrounds phosphorus fertilizer in a water-soluble 'shield;' blocking the bonds of attraction of chemical elements in the soil to the phosphorus" Avail's uses are covered in US patents 6,525,155 and 6,596,831. Information from these patents confirms that Avail is the Na salt of long chain carbon compounds with a high net negative charge.
- JumpStart is a product of Novozymes Biologicals
 - a seed inoculant containing the fungi *Penicillium bilaii*. The fungus grows on the root system and produces a number of organic compounds that increase the solubility of native and fertilizer P.

Objectives

- Confirm current P soil test interpretations and fertilizer recommendations;
 - Corn and wheat will respond to P fertilizer at ST < 20 mg kg⁻¹
- Evaluate the potential benefit of using Avail and/or JumpStart with P fertilizer in corn and wheat production

Corn Studies

- Field trials were established at three sites in 2008 and five sites in 2009
- All sites had low soil test P (Melich III < 20g kg⁻¹)
- Treatments included:
 - three rates of P in 2008 and 4 in 2009
 - with and without the Avail added to the fertilizer,
 - with and without JumpStart added to the seed
- Treatment effects were measured by
 - Seedling, earleaf and grain P content
 - grain yield and yield components at harvest

Trial Locations

Cheyen	ine Ra	wlins	Decatur	Norton	Phillips	Smith	Jewell	public	Washing ton		na11 Nemal	hal	Doni- n phan tchison	۶,
Sherma	 Th	iomas	Sheridan	Graham	Rooks	Osborne	Mitchell	Cloud	Clay -	· ·	ttawa- Ua tomie	Je	 Lea	avlen- orth Wyshr vdotte
Wallace	 Log	jan	Gove	Trego	Ellis	Russell	Lincoln	Ottawa Saline	Dickin-	Geary	Wabaun- see		Douglas	~~ [
Greeley	Wichita	Scott	Lane	Ness	Rush	Barton	Ellsworth Rice	McPhersor	Marior			Osage	Franklin Ander-	<u>Miami</u>
Hamilton	<u>Kearny</u>	Finn 		Hodgeman	Pawnee	Stafford	Reno	Harv	/ey	' Chase	·]——	Coffey Wood- son	son	_ <u>Linn</u> Bourbon
Stanton	Grant	Haskell	 <u>Gr</u> ay	Ford	Kiowa	Pratt	Kingman	Sedgw	rick B	utler	Greenwood E1k		Neosho	Craw-
Morton s	Stevens	Seward	Meade	Clark	Comanche	Barber	Harper	· Sumr	her C	owley	Chau- tauqua	Mont- gomery	Labette	Chero- kee

Site Information

Location	Soil Series	Taxonomic Class	рН	O.M.	Р	К
				g kg⁻¹	mg	kg ⁻¹
		Fine-silty, mixed, superactive,				
ANF (2008)	Kahola silt loam	mesic Cumulic Hapludolls	6.2	2.2	11.3	155
		Fine-silty, mixed, superactive,				
ANF (2009)	Reading silt loam	mesic Pachic Argiudolls	7.7		13.0	
		Coarse-silty, mixed,				
		superactive, mesic Fluventic				
KRV (2008)	Eudora silt loam	Hapludolls	6.6	0.9	15.3	111
KRV (2009)			7.0		15.0	
		Fine, smectitic, mesic Pachic				
NCE (2008)	Crete silt loam	Argiustolls	6.5	2.7	11.5	532
NCE (2009)			6.3	2.7	14.0	
		Fine, smectitic, thermic				
ECE (2009)	Woodson silt loam	Abruptic Argiaquolls	6.0		11.0	
		Fine-silty, mixed, superactive,				
HKS (2009)	Rossville silt loam	mesic Cumulic Hapludolls	6.9		12.5	

Effect of P Application on Seedling P Uptake (mg P plant⁻¹)

Р	Agron	NCE	Agron	KRV	NCE	ECE	HKS
kg/ha	Farm8	Field8	Farm9	Field9	Field9	Field9	Farm9
0	23.4	20.9	14.1	10.0	8.33	13.0	12.3
4.9	-	-	13.5	10.3	8.52	12.9	11.9
9.8	29.1	25.8	13.6	12.0	8.17	12.4	11.0
19.8	24.8	22.5	15.1	11.0	9.37	13.2	11.8
0 vs P	NS	0.031	NS	NS	NS	NS	NS
Low vs hi	NS	NS	0.47	NS	NS	NS	NS

Effect of P Product on Seedling P Uptake (mg P plant⁻¹)

Prod	Agron	NCE	Agron	KRV	NCE	ECE	HKS
	Farm8	Field8	Farm9	Field9	Field9	Field9	Farm9
None	27.2	23.6	14.1	11.1	8.69	12.8	11.6
Avail	25.9	22.7	14.2	10.9	8.52	12.6	11.8
JumpS	26.8	22.3	13.5	10.8	9.2	12.8	-
AV + JS	27.0	23.4	13.7	11.1	8.74	13.7	-
Av vs 0	NS	NS	NS	NS	NS	NS	NS
JS vs 0	NS	NS	NS	NS	NS	NS	-
Av+JS vs 0	NS	NS	NS	NS	NS	NS	-

Effect of P Application on Corn Yield, 2008 (bu ac⁻¹)

Р	Agron	NCE	KRV
kg/ha	Farm	Field	Field
0	195.2	196.8	217.6
4.9	-	_	-
9.8	168	216	217.6
19.8	196.8	222.4	241.6
SE	8.98	6.51	15.2
0 vs P	NS	0.003	NS
Low vs hi	NS	NS	NS

Effect of P Product on Corn Yield, 2008 (bu ac⁻¹)

Agron	NCE	KRV
Farm	Field	Field
209.6	217.6	209.6
222.4	216	222.4
208	209.6	208
216	217.6	216
8.98	6.51	15.2
NS	NS	NS
NS	NS	NS
NS	NS	NS
	Farm 209.6 222.4 208 216 8.98 NS NS	FarmField209.6217.6222.4216208209.6216217.68.986.51NSNSNSNS

Effect of P Application on Corn Yield, 2009 (bu ac⁻¹)

Р	Agron	NCE	KRV	ECE	Hooks
kg/ha	Farm	Field	Field	Field	Farm
0	217.6	192	230.4	77.92	232
4.9	220.8	211.2	227.2	68	227.2
9.8	214.4	216	233.6	89.28	209.6
19.8	198.4	225.6	230.4	71.2	224
SE	9.5	7.1	6.0	9.7	10.4
0 vs P	NS	<0.001	NS	NS	NS
Low vs hi	NS	<0.001	NS	NS	NS

Effect of P Product on Corn Yield, 2009 (bu ac⁻¹)

Prod	Agron	KRV	NCE	ECE	HKS
	Farm	Field	Field	Field	Farm
None	211.2	230.4	217.6	76.2	220.8
Avail	217.6	230.4	212.8	92.2	217.6
JumpS	209.6	225.6	219.2	84.3	-
AV + JS	198.4	236.8	208	87.0	-
SE	9.5	7.1	6.0	9.7	10.4
Av vs 0	NS	NS	NS	NS	NS
JS vs 0	NS	NS	NS	NS	-
Av+JS vs 0	NS	NS	(.019)	NS	-

Wheat Studies

- Two different studies were conducted the 2008-2009 crop year
 - Two replicated field studies consisting of:
 - three rates of P
 - with and without the addition of Avail to the fertilizer
 - with and without JumpStart to the seed
 - With both Avail and JumpStart
 - Three replicated field consisting of:
 - Three rates of P
 - With and without the addition of Avail to the fertilizer
 - Non-replicated trials were conducted with the JumpStart seed treatment as part of county wheat variety demonstrations

Replicated Trial Locations with Wheat

Cheyenn	ie Rai	wlins	Decatur	Norton	Phillips	Smith	Jewell	Republic	Washing-		11 Nemal	hal	Doni- n phan tchison	<u>k</u>
Sherman	 ть	omas	Sheridan	Graham	Rooks	Osborne	Mitchell	Cloud	Clay	\ to	awa- Ua mie Jorova	ickson Je	 Lea	avien- orta Wyain- veotte
Wallace	 Log	an	Gove	Trego	Ellis	Russell	Lincoln	Ottawa Saline	Dickin-r	Geary W	/abaun- see	Shaw- [nee	Douglas	~~ [
Greeley	'ichita	Scott	Lane	Ness	Rush	Barton	Ellsworth 1 Rice	McPhersor	Marion	Morris	Lyon	Osage	Franklin Ander-	<u>Miami</u>
Hamilton	earny	Finn		Hodgeman	Pawnee Edwards	Stafford	Reno	Harv	rey	Chase]——	Coffey Wood- son	son	_Linn Bourbon
	9rant	Haskell	 <u>Gr</u> ay	Ford	Kiowa	Pratt	Kingman	Sedgw	rick Bu	tler	eenwood Elk	'	Neosho	Craw-
Morton St	evens	Seward	Meade	Clark	Comanche	Barber	Harper	- Sumr	l Ier Cov	wley	Chau- tauqua	Mont- gomery	Labette	Chero- kee

Site Information

Location	Soil Series	Taxonomic Class	рН	0.M.	Р	К
				g kg⁻¹	mg	kg ⁻¹
Franklin		Fine, smectitic, thermic Abruptic				
County	Woodson silt loam	Argiaquolls	6.7	30	23	165
Greeley		Fine-silty, mixed, superactive,				
County	Ulysses silt loam	mesic Aridic Haplustolls	6.4	14	63	
McPherson		Fine, smectitic, mesic Pachic				
County	Crete silt loam	Argiustolls	4.7		19	
		Fine, mixed, superactive, mesic				
Riley County	Tully silty clay loam	Pachic Argiustolls	5.9		6	
Stanton		Fine, smectitic, mesic Aridic				
County	Richfield silt loam	Argiustolls	7.6		15	

Franklin and Greeley County locations above critical level
Riley County location P applied below recommended rates

Effect of P Application on Flagleaf P (g P kg⁻¹)

P kg/ha	Riley	WARC	Stanton
0	1.63	2.13	2.36
9.8	1.74	2.13	2.38
19.6	1.81	2.43	2.24
0 vs P	0.007	0.028	NS
Low vs hi	0.47	0.049	NS

No P added

40 lbs P_2O_5 added

Effect of P Product on Flagleaf P (g P kg⁻¹)

		<u> </u>	
P kg/ha	Riley	WARC	Stanton
0	1.63	2.13	2.36
Avail	1.74	2.13	2.38
JumpStart	1.81	2.43	2.24
JS + Avail	1.76	-	2.21
0 vs Avail	NS	NS	NS
0 vs JS	NS	-	NS
0 vs JS+AV	NS	-	NS

Effect of P Application on Wheat Yield, 2009 (bu ac⁻¹)

P kg/ha	Riley	WARC	Stanton	McPhers on	ECES
0	17.1	26.6	39.3	62.7	65.7
9.8	26.0	23.9	40.0	64.8	67.7
19.8	30.5	25.4	43.4	67.8	67.5
SE	2.0	4.7	2.2	2.0	1.8
0 vs P	<0.001	NS	NS	NS	NS
Low vs hi	<0.001	NS	NS	NS	NS

Effect of P Product on Wheat Yield, 2009 (bu ac⁻¹)

Prod	Riley	WARC	Stanton	McPher son	ECES
None	28.2	24.6	41.6	66.3	67.6
Avail	30.9	27.2	43.9	68.8	68.3
JumpS	26.0	NA	41.6	NA	NA
AV + JS	26.8	NA	40.1	NA	NA
SE	2.0	4.7	2.2	2.0	1.8
Av vs 0	NS	NS	NS	NS	NS
JS vs 0	NS	NA	NS	NA	NA
Av+JS vs 0	NS	NA	NS	NA	NA

Jumpstart county summary

- Trials were conducted with the JumpStart seed treatment as part of county wheat variety demonstrations
- Using each test location as a replication
- Overall, JumpStart failed to enhance yields in 18 of the 20 comparisons

	P kg ha ⁻¹	Yield bu ac ⁻¹
Non Treated	0	62.58
JumpStart Treated	0	59.21
SE		2.5
Contrast		0.0039

Conclusions on Corn

- 2008 and 2009 Excellent corn yields were observed
- Despite locations having ST P below the critical value, only one site, NCEF, responded to P fertilization in both years
- No response to either product was seen at any location or year were a response to P fertilizer was observed

Conclusions on Wheat

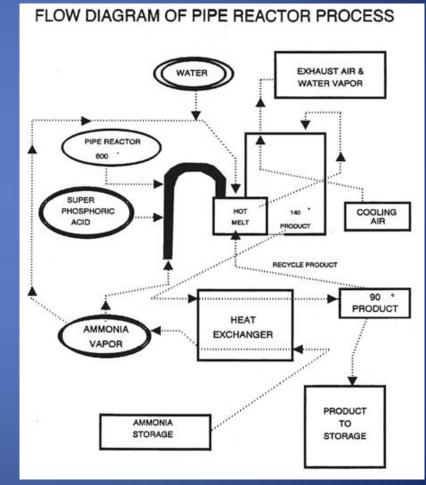
- A range of yields were observed in 2009
- Significant responses to P were obtained at Riley County for both tissue P content and grain yield and WARC for tissue P content
- No responses to JumpStart or Avail were observed at any of the locations in all trials during 2008-2009 crop year

Recommendations to Producers

- JumpStart showed no increase in P response when fertilizer P was added. In corn trials, there were few observed increases in P uptake, and no increases in grain yield. In replicated wheat trials, there were no observed increases in P uptake or grain yield; additional strip trials showed an overall negative response with the JumpStart seed treatment.
- The Avail trials resulted in few positive results. There was no grain yield response to the use of this product at the P responsive sites for corn and wheat. Overall, this product did not prove to be an effective method of increasing P uptake or yield with broadcasted MAP fertilizer.

Acknowledgements

- Advisor: Dr. Dave Mengel and committee members Dr. Dorivar Ruiz Diaz and Kraig Roozeboom
- Fellow graduate students: Kent Martin, Josh Stamper, Holly Weber, Drew Tucker and Jason Matz
- Station mangers and staff
- Novozyme Biologicals and J. R. Simplot and Co. for financial support


Common questions about P fertilizers

What does the Plant want?

- There are two forms of P that plants are able to take up, H₂PO₄⁻ or HPO₄⁻².
- Formulas of common P fertilizers
 - DAP (18-46-0) (NH₄)₂HPO₄
 - MAP (11-52-0) (NH₄)H₂PO₄
 - APP (10-34-0) $H_2O(NH_4)_3PO_4$

10-34-0 'White Acid' v. 'Black Acid'

- Acid 'color' just refers to the method of which the Super Phosphoric Acid (SPA) is produced.
- No matter the input SPA the result is 10-34-0 a mix of poly and ortho

Fluid Fertilizer Foundation

