The Importance of Nitrogen Additives, N timing and .... What Happened in 2010





#### Carl Rosen Department of Soil, Water, and Climate University of Minnesota



Nutrient Efficiency and Management Conference February 15, 2011



### Topics

#### Background

- Pathways of N loss
- Conditions for N loss
- Review of N cycle

#### Nitrogen Products

- Properties and how they work
- Instinct, Agrotain/Super U, NSN, ESN

#### Crop response data

- Dryland and irrigated conditions with a focus on 2010
- Comments on handling and application methods for ESN



### Background

- Numerous products have been developed recently with claims of enhancing fertilizer use efficiency
- Modes of action and effectiveness vary with the product
- Most are nitrogen products, some are phosphorus products
- All will be more expensive than the conventional product
- Benefits, if any, will depend on a number of factors

### Factors to Consider

- What is the potential for nutrient loss (N) in your production system?
- What is the cost of the product vs. effects on yield?
- Application method is there a cost savings?
- Are research results from independent entities available? (do not rely on testimonials)
- What is the mode of action? (relate to N cycle)

#### The Nitrogen Cycle



### **Urea Decomposition**

#### $(NH_{2})_{2}CO + H_{2}O \rightarrow 2NH_{3(gas)} + CO_{2(gas)}$ urease urea + water $\rightarrow$ ammonia + carbon dioxide

 $\frac{\text{NH}_{3(gas)} + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^-}{\text{ammonia} + \text{water} \rightarrow \text{ammonium} + \text{hydroxide}}$ 

Ammonia loss can occur though volatilization
Surface applications and high soil pH promote losses
If urea is incorporated, ammonia losses are minimal
Urea can be lost by leaching prior to ammonium conversion

### Ammonium Transformation -Nitrification

- Ammonium is relatively immobile in soil
- Nitrate losses can occur through:
  - leaching
    - sandy or tiled soils
  - dentrification (conversion to N<sub>2</sub>O or N<sub>2</sub>)
    - saturated soils
  - fall applied N (subject to leaching and denitrification)

### Incubation Study 150 lb N/A Added as Urea



### Possible Modes of Action to Improve Use Efficiency

- Stabilized nitrogen
  - Slow down conversion of urea to ammonium (urease inhibitor)
  - Slow down conversion of ammonium to nitrate (nitrification inhibitor)

#### Slow release nitrogen

- Formation of long chain N compounds
  - Methylated urea (generally expensive to produce)

#### Controlled release nitrogen

- Physical or chemical barrier to slow down solubility
  - Polymer coating around fertilizer prill (usually urea)
  - Sulfur coating around prill

### Nitrogen Products - urea/UAN based -

#### Instinct

Agrotain/SuperU/Agrotain Plus

Nutrisphere Nitrogen (NSN)

Polymer coated urea
 – Environmentally Smart Nitrogen (ESN)

### Instinct

- Instinct is manufactured by Dow AgroSciences and register for corn
- Nitrapyrin or 2-chloro-6-(tirchloromethyl) pyrine same compound as N-Serve except formulated for UAN
- Mode of action Nitrification inhibitor

### Agrotain

- Agrotain is the company name and trade name for NBPT, or N-(n-butyl) thiophosphoric triamide
- Mode of action Urease inhibitor
- Slows down conversion of urea to ammonia
- Reduces ammonia volatilization





### NT Corn-Corn Responses with Agrotain (180 lb N/A; 4 yr average)

|                  | Application | Site 1 | Site 2 |
|------------------|-------------|--------|--------|
| N Source         | method      | bu/A   |        |
| Urea             | broadcast   | 106d   | 98d    |
| Urea + Agrotain  | broadcast   | 134c   | 112ab  |
| Ammonium nitrate | broadcast   | 151b   | 118ab  |
| UAN              | broadcast   | 123c   | 103cd  |
| UAN + Agrotain   | broadcast   | 128c   | 107bcd |
| UAN              | injected    | 172a   | 123a   |
| Check            |             | 34e    | 62e    |

Means followed by the same letter are not significantly different at p=0.05; Data adapted from Varsa et al.

http://www.cropsci.illinois.edu/research/rdc/dixonsprings/proj reports/eval nitro practices.cfm

Urea+A = UAN+A = UAN broadcast > Urea broadcast UAN injected > AN broadcast > UAN broadcast > Urea broadcast

### Super U and Agrotain Plus

 Manufactured by Agrotain
 Super U formulated for urea — Agrotain Plus formulated for UAN



- Mode of action urease inhibitor & nitrification inhibitor
  - NBPT, or N-(n-butyl) thiophosphoric triamide
  - DCD, or dicyandiamide
  - Slows down conversion of urea to ammonium
  - Slows down conversion of ammonium to nitrate
- Reduces ammonia volatilization and nitrate leaching

### NSN

- Nutrisphere Nitrogen: 46-0-0
- Specialty Fertilizer Products
- Water soluble polymer coated urea
  - Dicarboxylic copolymers high CEC (same compound as Avail)
  - Originally developed to improve phosphorus availability
- The co-polymer is biodegradable and water soluble

### **NSN Polymer Characteristics**

 Compounds have an extremely high exchange capacity – approximately 1.8 eq/100 g

 Polymeric structure is very specific to attracting and adsorbing multivalent cations

 Functionality is not affected by pH, temperature ranges or ionic strength

Mode of action – urease inhibitor ??

### ESN

- Environmentally Smart Nitrogen, 44-0-0
- Manufactured by Agrium Co.
  - Coated urea mode of action lowers solubility
  - Release rate depends on soil moisture and temperature



### **Polymer Coated Technology**



Release rate depends on: coating thickness, temperature, and moisture

#### N Release from ESN - "Mesh Bag" Method -



# Visual assessment of ESN granules through the growing season

## Days after Planting 0



#### Nitrogen Uptake and Growth





### What Happened in 2010?

#### Inches of Rainfall at Waseca and Becker, MN in 2009 and 2010

| Month     | Waseca |      | Becker   |      |
|-----------|--------|------|----------|------|
| WORLI     | 2009   | 2010 | <br>2009 | 2010 |
| April     | 2.4    | 1.6  | 1.2      | 1.8  |
| May       | 1.9    | 3.3  | 0.8      | 2.6  |
| June      | 2.8    | 9.6  | <br>3.4  | 10.1 |
| July      | 1.5    | 6.6  | 2.1      | 2.8  |
| August    | 3.3    | 2.4  | 5.1      | 3.4  |
| September | 1.5    | 12.7 | 0.4      | 7.9  |
| October   | 7.1    | 1.0  | 4.1      | 2.3  |
| November  | 0.9    | 2.5  | 0.3      | 1.4  |

Clay loam

Loamy sand

Minnesota Field Trials with Instinct, ESN, NSN, Super U

- Instinct, NSN, & ESN dryland corn, Waseca
  - Randall and Vetsch, 2008-2010
- ESN & NSN irrigated corn, Staples
   Moncrief and Rosen; 2008 & 2009
- ESN & Super U irrigated corn, Becker
   Rosen, Lamb, and Venterea; 2009-2010

### Instinct on Dryland Corn, Waseca

Randall and Vetsch, 2008-2010

- Webster/Nicolette clay loam
- Corn-soybean (2008 & 2010) Corn-corn (2009)
- Instinct Treatments (spring applied preplant & incorporated)
  - UAN @ 80 lb N/A
  - UAN @ 80 lb N/A + Instinct (35 fl oz/A)
  - UAN @ 120 lb N/A
  - UAN @ 120 lb N/A + Instinct (35 fl oz/A)

#### Instinct Effects on Dryland Corn 2008-2010

| N Rate      | Inhibitor Rate | 2008 | 2009 | 2010 |
|-------------|----------------|------|------|------|
| lb N/A      | fl oz/A        |      | bu/A |      |
| 80          | 0              | 138  | 178  | 173  |
| 80          | 35             | 141  | 178  | 181  |
| 120         | 0              | 157  | 196  | 178  |
| 120         | 35             | 159  | 199  | 191  |
| Instinct ef | fect           | NS   | NS   | **   |
| Rate effec  | t              | **   | **   | **   |
| Interactio  | n              | NS   | NS   | NS   |

2008 & 9 – dry years; 2010 wet year

2008 & 9: Only N rate significant 2010: N rate and Instinct significant

### ESN & NSN on Dryland Corn, Waseca

Randall and Vetsch, 2009-2010

- Webster/Nicolette clay loam
- Corn following soybean

#### Treatments

- Urea fall applied and incorporated @ 100 lb N/A
- ESN fall applied and incorporated @ 100 lb N/A
- NSN fall applied and incorporated @ 100 lb N/A
- Urea spring applied preplant and incorporated @ 100 lb N/A
- ESN spring applied preplant and incorporated @ 100 lb N/A
   NSN spring applied preplant and incorporated @ 100 lb N/A
- Check

#### ESN and NSN, Waseca 2009 dry; 2010 wet

| Sourco | Timing  | Rate   | 2009   | 2010 |
|--------|---------|--------|--------|------|
| Source | IIIIIIg | lb N/A | bu     | /A   |
| Check  |         | 0      | 176d   | 156b |
| Urea   | Fall    | 100    | 233ab  | 200a |
| ESN    | Fall    | 100    | 232abc | 199a |
| NSN    | Fall    | 100    | 226abc | 197a |
| Urea   | Spring  | 100    | 223abc | 198a |
| ESN    | Spring  | 100    | 220bc  | 203a |
| NSN    | Spring  | 100    | 236a   | 205a |

Means followed by the same letter are not significantly different at p=0.10

2009: Spring NSN > Spring NSN 2010: No effect of timing or additives

### Irrigated Corn, Staples

Moncrief and Rosen, 2008 and 2009

- Verndale sandy loam
- Corn following corn

#### Treatments

- Urea spring applied preplant @ 160 lb N/A
- Urea 40% spring applied preplant & 60% sidedress, 6 leaf @ 160 lb N/A
- ESN spring applied preplant and incorporated @ 160 lb N/A
- NSN spring applied preplant and incorporated @ 160 lb N/A
- Check

#### Simulated leaching in 2008

- Extra 2.2" of irrigation water applied at the end of June
- All plots received leaching rain in 2009 (3.8" 3<sup>rd</sup> week in June & 3" on July 15)

### Staples, 2008

#### Extra Irrigation

|            | Grain Yield |
|------------|-------------|
| Treatment  | bu/A        |
| Check      | 54c         |
| Urea pp    | 150b        |
| Urea split | 155ab       |
| ESN        | 175a        |
| NSN        | 141b        |

#### **Normal Irrigation**

|            | Grain Yield |
|------------|-------------|
| Treatment  | bu/A        |
| Check      | 57c         |
| Urea pp    | 161b        |
| Urea split | 173ab       |
| ESN        | 188a        |
| NSN        | 181a        |

Means within an irrigation treatment followed by the same letter are not significantly different at p=0.10

Extra Irrigation: ESN > NSN = pp Urea Normal Irrigation: ESN = NSN > pp Urea

### Staples, 2009

cold spring & wet June/July

|            | Grain Yield |
|------------|-------------|
| Treatment  | bu/A        |
| Check      | 45c         |
| Urea pp    | 114b        |
| Urea split | 135a        |
| ESN        | 128ab       |
| NSN        | 125ab       |

Means followed by the same letter are not significantly different at p=0.10

Urea split > Urea pp; Urea split = ESN = NSN

### Irrigated Corn, Becker

Rosen, Lamb, and Venterea, 2009 & 2010

Hubbard loamy sand

#### Corn following small grain

#### Treatments

- Check
- Urea split applied at 6-8 leaf, 10-12 leaf at 160 lb N/A
- Urea preplant at 160 lb N/A
- ESN preplant at 160 lb N/A
- Super U preplant at 160 lb N/A

#### Becker- Irrigated Corn, 2009 & 2010 2009 dry; 2010 wet

| Source | Timing   | Rate   | 2009   | 2010   |
|--------|----------|--------|--------|--------|
| Source | IIIIIIg  | lb N/A | bu/A   |        |
| Check  |          | 0      | 93d    | 85d    |
| Urea   | split    | 160    | 218a   | 197a   |
| Urea   | preplant | 160    | (160c) | (135c) |
| ESN    | preplant | 160    | 185b   | 167b   |
| SuperU | preplant | 160    | 187b   | 167b   |

Means followed by the same letter are not significantly different at p=0.10

Split Urea > pp ESN = pp Super U > pp Urea

#### ESN Handling Issues 2006-7 lab grade; 2008-9 dealer grade



### **Evaluation of ESN Prill Damage**

- 24 hour test
- Weigh 3-4 grams in beaker
- Add 400 mL water
- Screen out prills after 24 hours
- Dry and then weigh
- Weight loss due to leaky prills



### ESN Damage Lab vs. Dealer Grade (24 hr test)

| Sample        | % released |
|---------------|------------|
| 2006 (lab)    | 0.9        |
| 2007 (lab)    | 1.3        |
| 2008 (dealer) | 11.3       |
| 2009 (dealer) | 6.7        |

### Evaluation of ESN Damage during Handling









### ESN Damage Increases with Handling

| Stage of Handling        | % N released |
|--------------------------|--------------|
| ESN in Truck from Dealer | 6.9          |
| ESN in Spreader Hopper   | 9.5          |
| ESN from Boom Deflector  | 28.8         |

# What About a Spinner Spreader?





# ESN Damage is Less with a Spinner Spreader

| Stage of Handling                               | % N Released |
|-------------------------------------------------|--------------|
| ESN from Bin                                    | 6.9          |
| ESN after Spreading with Spinner, 150 lb/A rate | 17.4         |
| ESN after Spreading with Spinner, 400 lb/A rate | 16.9         |
| ESN from Air Boom Deflector                     | 28.8         |

### Summary & Key Points

- Newer products have been developed to help improve fertilizer use efficiency
  - Insurance
  - Convenience
- They come at a cost
- Understanding how the product works will help to determine situations where a benefit may be obtained
- Polymer-coated urea products such as ESN can be damaged with rough handling especially with air boom spreaders



### Summary & Key Points

- These products may not be effective in all conditions, often weather dependent, specific recommendations are difficult to make
  - positive results are more probable when conditions are conducive for N losses
  - Base decisions to use a product on sound research
- Don't expect miracles...

