### Improve Nitrogen Management by Considering the Source

#### Minnesota Agriculture and Nitrates Forum Rochester, MN July 25, 2012

Carrie Laboski





# N management continues to be a challenge

- High fertilizer prices
- Land application of manure
- Typical and unusual weather challenges
- Confusion about N fertilizer sources & technologies
- Uncertainty regarding manure and legume N credits
- Fear of economic yield loss

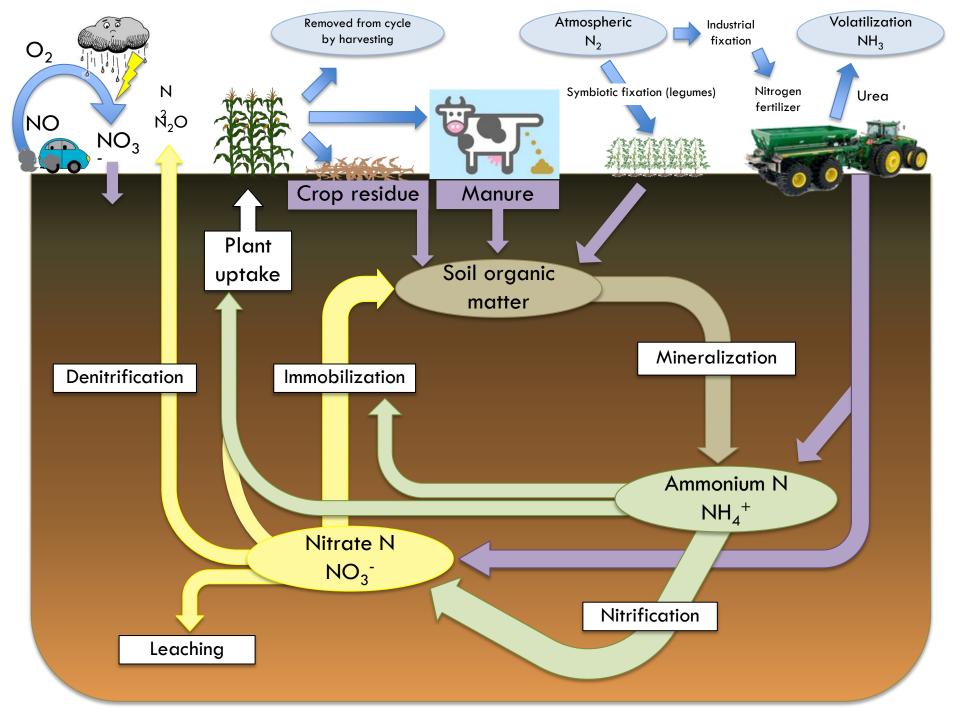




### 4 Rs of Nutrient Stewardship

- Right nutrient <u>Source</u> of the
- Right <u>Rate</u>, at the
- Right <u>Time</u> and in the
- Right <u>Place</u>






#### Most important tool









## Common Sources of Fertilizer N in the Upper Midwest

- Urea
  - must breakdown to  $NH_4^+$  to be plant available
- Ammonium sulfate
- Ammonium nitrate
- Urea ammonium nitrate (UAN, 28%, 32%)
- Anhydrous ammonia



## Organic Sources of N

- Manure
- Forage legumes
- Green manures (cover crops)
- Biosolids
- Other wastes



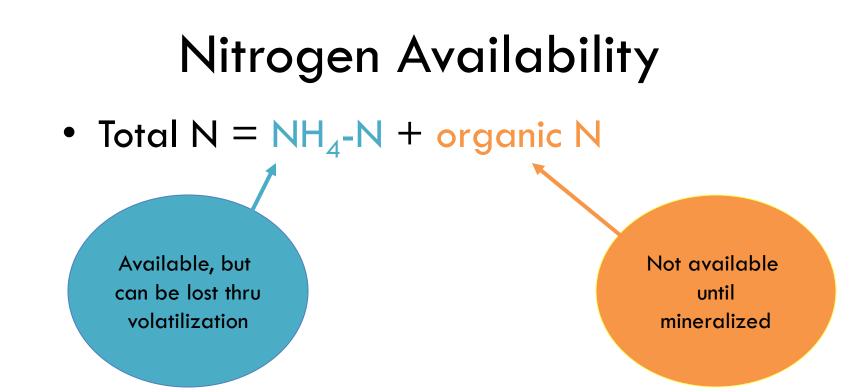




# What you need to know about manure N availability

- All manure is not created equally
- All manure nutrients are not available
   Total nutrient content = inorganic + organic
- Some nutrients can be lost
- Nutrient credit is dependent upon
  - Amount of manure applied among other things






#### Average nutrient & dry matter content of manure

| Species – Storage      | DM | Ν                  | $P_2O_5$ | K <sub>2</sub> 0 |
|------------------------|----|--------------------|----------|------------------|
|                        | %  | lb/T or lb/1000gal |          |                  |
| Dairy — Solid          | 24 | 10                 | 5        | 9                |
| Dairy — Liquid         | 6  | 24                 | 9        | 20               |
| Swine – Solid          | 20 | 14                 | 10       | 9                |
| Swine – Liquid indoor  | 7  | 50                 | 42       | 30               |
| Swine – Liquid outdoor | 4  | 34                 | 16       | 20               |
| Chicken – Solid        | 60 | 40                 | 50       | 30               |
| Turkey — Solid         | 60 | 40                 | 40       | 30               |
| Poultry — Liquid       | 3  | 16                 | 10       | 12               |







 Available N = NH<sub>4</sub>-N that isn't lost
 +
 Mineralized N from organic N



Wisconsin-Madison

### Variability in N Content of Dairy Manures

|                                |      |           |         |        | Total C: |
|--------------------------------|------|-----------|---------|--------|----------|
| Manure type                    | DM   | TN        | NH₄     | NH₄/TN | Total N  |
|                                | %    | lb/T or 1 | 000 gal | %      |          |
| Farm 1                         |      |           |         |        |          |
| Raw liquid                     | 6.7  | 21.0      | 9.0     | 43     | 11.4     |
| Digest liquid                  | 4.7  | 20.0      | 9.8     | 49     | 7.6      |
| Digested separated liquid      | 3.1  | 18.4      | 9.9     | 54     | 5.4      |
| Digested separated stored liq. | 3.3  | 18.4      | 9.9     | 54     | 5.7      |
| Digested separated solid       | 32.6 | 10.2 🤇    | 0.3     | 3      | 29.9     |
| Digested separated cured solid | 32.3 | 14.0 🤇    | ) 1.1   | 8      | 20.5     |
|                                |      |           |         |        |          |
| Farm 2                         |      |           |         |        |          |
| Raw liquid                     | 4.9  | 16.2      | 8.4     | 52     | 9.7      |
| Digested liquid                | 2.6  | 17.2      | 11.4    | 66     | 4.6      |
| Digested separated liquid      | 7.5  | 24.0      | 12.7    | 53     | 8.3      |
| Digested separated solid       | 26.2 | 11.4 🤇    | 2.8     | 25     | 19.9     |





#### Variability in N Content of Dairy Manures

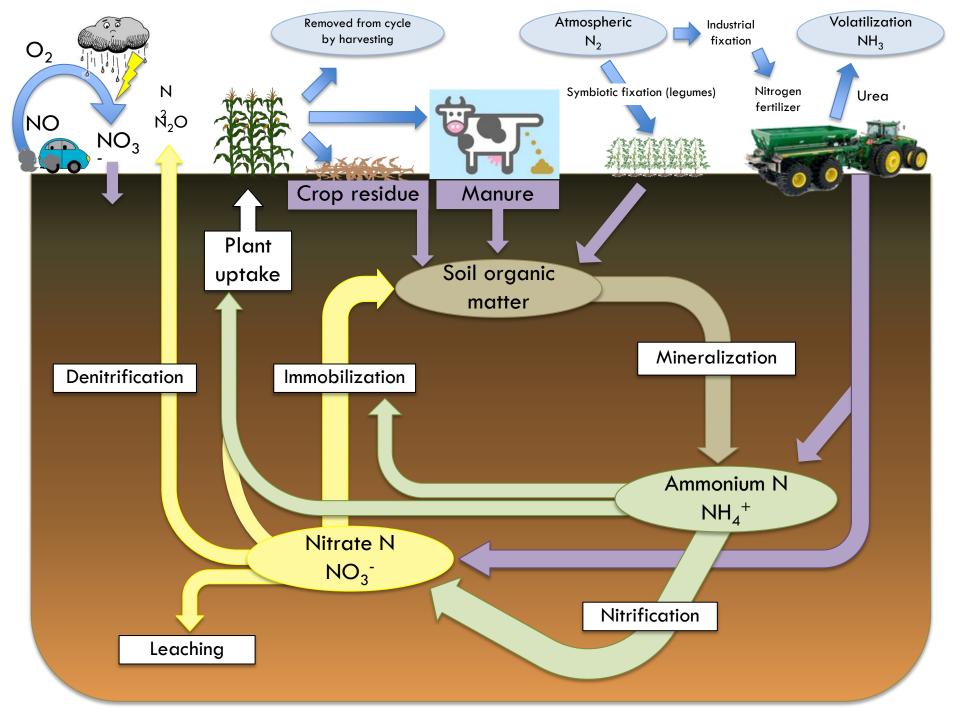
|                           | DM   |            | NUL     |        | Total C: |
|---------------------------|------|------------|---------|--------|----------|
| Manure type               | DM   | TN         | NH₄     | NH₄/TN | Total N  |
|                           | %    | lb/T or 10 | 000 gal | %      |          |
| Farm 3                    |      |            |         |        |          |
| Separated liquid          | 1    | 9.5        | 7.3     | 76     | 3        |
| Separated stored liquid   | 2.8  | 26.1       | 7.5     | 29     | 5.2      |
| Separated solid           | 16.7 | 5.2 🤇      | 0.9     | 18     | 30.3     |
| Separated composted solid | 24.7 | 14.0 🤇     | 0.6     | 4      | 14.9     |
|                           |      |            |         |        |          |
| Farm 4                    |      |            |         |        |          |
| Compost bedded pack 0-1'  | 39.7 | 15.7 🤇     | 0.5     | 3      | 23.4     |
| Compost bedded pack 0-2'  | 37.7 | 17.4 🤇     | 9.1     | 23     | 18.7     |
| Compost bedded pack 0-3'  | 38.3 | 16.3 🤇     | 3.5     | 22     | 18       |
|                           |      |            |         |        |          |
| Farm 5                    |      |            |         |        |          |
| Raw solid-Scrape alley    | 13.8 | 8.5 🤇      | 4.1     | 49     | 2.2      |
| Raw solid-Approachment    | 24.3 | 7.8 🥲      | 2.4     | 31     | 7.4      |





#### Manure Nitrogen Availability Estiamtes

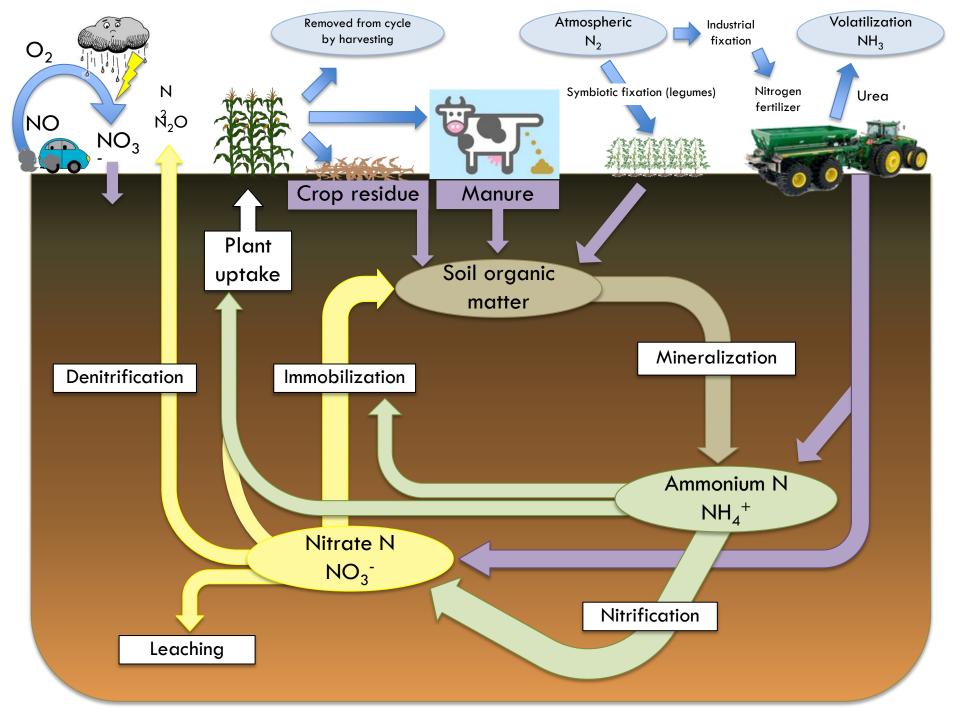
- Calculation/estimation varies by University
  - Experiments conducted, manure types, etc
  - Follow the guidelines for U of MN






# How does organic N in manure become available?








### Mineralization

- Organic N  $\longrightarrow$  NH<sub>4</sub><sup>+</sup>
- Bacteria & fungi in control
  - Temperature
    - Peak activity between  $75^{\circ}F$  and  $95^{\circ}F$
  - Oxygen
    - occurs to much greater extent in aerobic soils compared to anaerobic soils
  - Moisture
    - Max. activity between 50% and 70% water-filled pore space





### Nitrification

- $NH_4^+ \longrightarrow NO_2^- \longrightarrow NO_3^-$
- Controlled by
  - Supply of  $NH_4$
  - Temperature & moisture (similar to mineralization)
  - Population of nitrifying organisms
  - Soil pH (4.5 to 10.0, 8.5 is ideal)
  - Oxygen is required



# Fertilizer N forms are also governed by the N cycle





# Estimates of time needed for N to convert to different forms

| Process               | Time                |
|-----------------------|---------------------|
| $NH_4^+$ to $NO_3^-$  | 1 to 2 weeks        |
| Urea to $NH_4^+$      | 2 to 4 days         |
| Organic N to $NH_4^+$ | ??? Generally an    |
|                       | extended time frame |

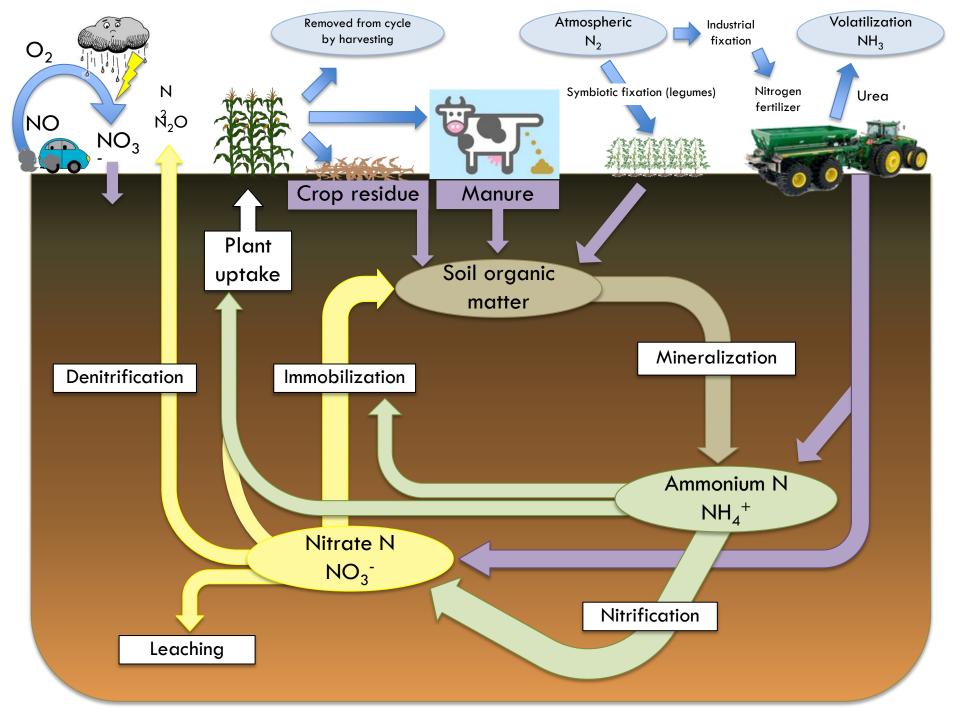




Carrie Laboski, Ph.D. CPSS, Assoc. Professor, Extension Soil Fertility Specialist

### Plant Available N Forms & Loss Mechanisms

• NH<sub>4</sub><sup>+</sup>


- Held on soil's CEC

• NO<sub>3</sub>-

- Subject to loss (leaching & denitrification)







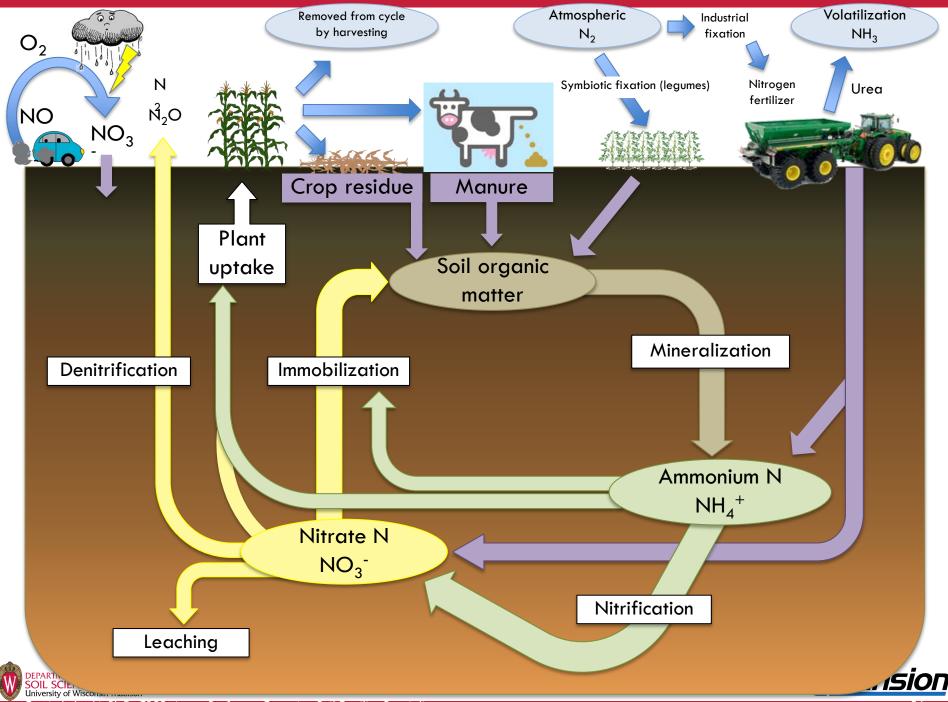
### Denitrification

- $NO_3^{-} \rightarrow N_2 \text{ or } N_2O$
- Need organic matter (carbon)
- Need nitrate
- Wet soils with low  $O_2$  content
  - Greater saturation periods results in more denitrification
- Temperature (bacteria prefer  $> 75^{\circ}F$ )
- pH (bacteria prefer >5.0)

# Using the N cycle to make decisions in five situations

- 1. Manure and forage legumes in rotation
- 2. Excessive rainfall on medium- & fine-textured soils
- 3. Topdressing in notill corn or grass pasture
- 4. Fall N applications
- 5. Sandy soils






#### Manure and forage legumes in rotation

 Biggest concern – N credits in years with cool temperatures and/or excessive rainfall







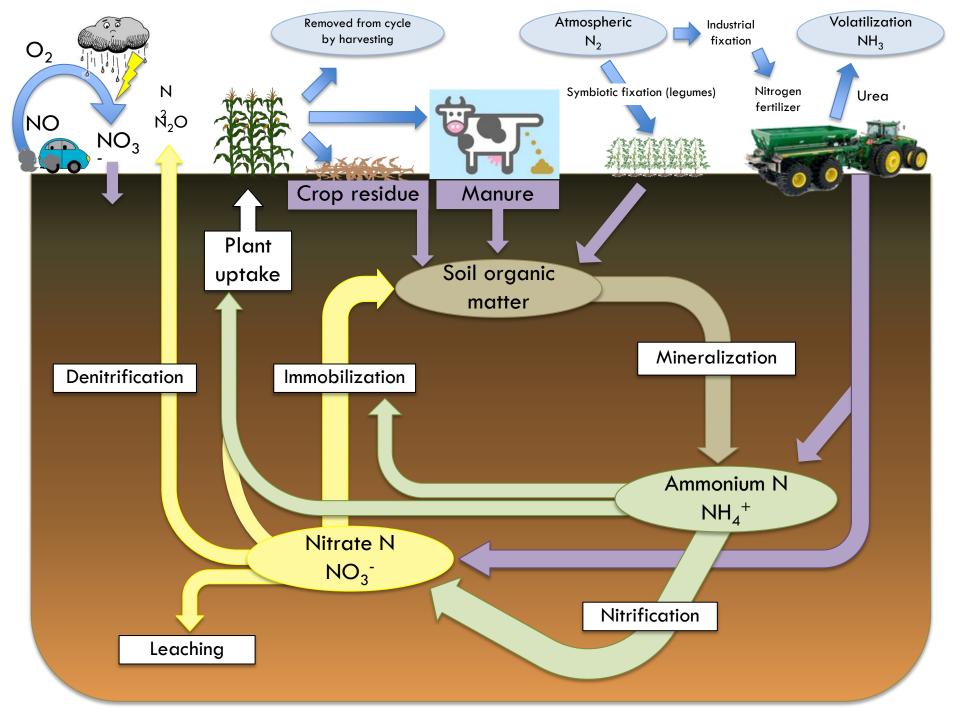
Carrie Laboski, Ph.D. CPSS, Assoc. Professor, Extension Soil Fertility Specialist

## Can PSNT be useful?

- If July-August temperatures ≥ average after a cool spring, the total amount of organic N mineralized with be close to expectations

   PSNT will underestimate available N
- If manure was applied in early fall, PSNT may better estimate N needs rather than using manure N credits
  - Assuming that some N may have been lost






### Excessive rainfall on medium- and finetextured soils

• Biggest concern – denitrification







# Approximate time until fertilizer N is in the nitrate form

| Fertilizer material                    | Approximate time until<br>NH <sub>4</sub> <sup>+</sup> | Approximate time until<br>NO <sub>3</sub> <sup>-</sup>                                           |
|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Ammonium sulfate,<br>10-34-0, MAP, DAP | 0 weeks                                                | 1 to 2 weeks                                                                                     |
| Anhydrous ammonia                      |                                                        | 3 to 8 weeks                                                                                     |
| Urea                                   | 2 to 4 days                                            | 1.25 to 2.5 weeks                                                                                |
| Ammonium nitrate                       | 50% is $NH_4^+$ , 0 weeks                              | 50% is NO <sub>3</sub> <sup>-</sup> , 0 weeks 50% in 1 to 2 weeks                                |
| UAN                                    | 25% is $NH_4^+$ , 0 weeks<br>50% is urea, 2 to 4 days  | 25% is NO <sub>3</sub> <sup>-</sup> , 0 weeks<br>25% in 1 to 2 weeks<br>50% in 1.25 to 2.5 weeks |





#### Estimated N losses from denitrification as influenced by soil temperature and number of days the soil is saturated

| Soil temperature (°F) | Days saturated | N loss (% of applied) |
|-----------------------|----------------|-----------------------|
| 55 to 60              | 5              | 10                    |
|                       | 10             | 25                    |
| 75 to 80              | 3              | 60                    |
|                       | 5              | 75                    |
|                       | 7              | 85                    |
|                       | 9              | 95                    |

From Shapiro, University of Nebraska





### Effect of Instinct applied preplant with 28% UAN at Arlington in 2008-2010

|      | Instinct         |         |        |         |  |  |
|------|------------------|---------|--------|---------|--|--|
| Year | N rate           | Without | With   | P value |  |  |
|      | lb N/a           | Yield   | (bu/a) |         |  |  |
| 2008 | mean of 80 & 120 | 173     | 178    | 0.25    |  |  |
| 2009 | mean of 40 & 80  | 196     | 196    | 0.91    |  |  |
| 2010 | mean of 40 & 80  | 196     | 201    | 0.14    |  |  |

| ay     |     | June    |                                          | July                                         |
|--------|-----|---------|------------------------------------------|----------------------------------------------|
| infal  | l c | lepartu | ire                                      | from                                         |
|        |     | •       |                                          |                                              |
| ).2    |     | 9.6     |                                          | 1.0                                          |
| .3     |     | 0.3     |                                          | -1.7                                         |
| .7     |     | 3.6     |                                          | 5.4                                          |
| n<br>2 | al  | all c   | all departu<br>ormal (inch<br>9.6<br>0.3 | all departure<br>ormal (inches<br>9.6<br>0.3 |

Instinct costs ~\$10/a





ARTMENT C

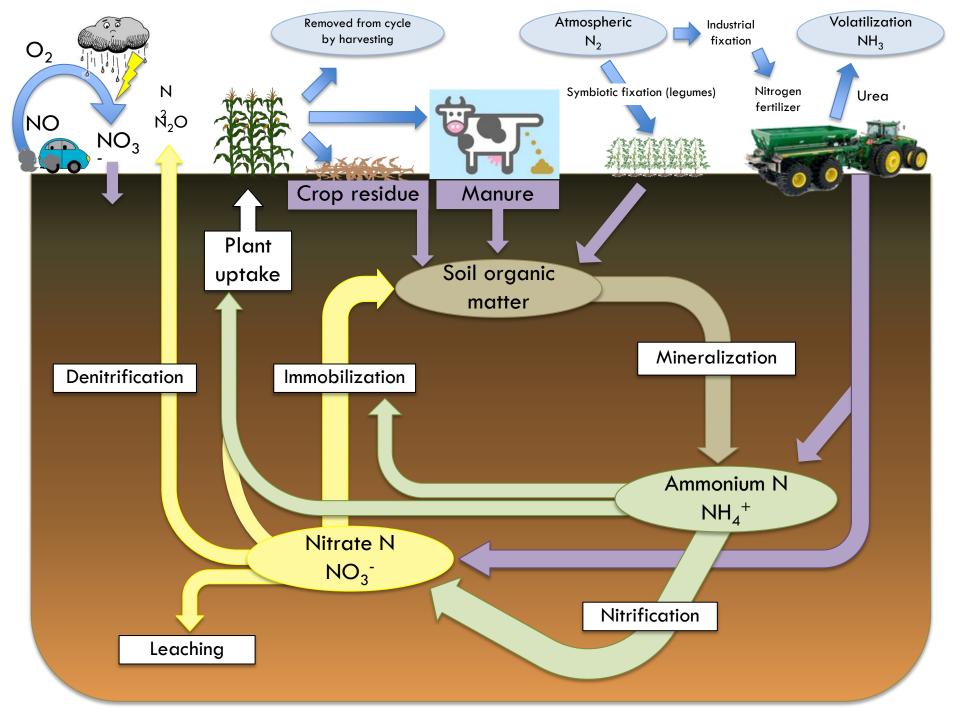
ersity of Wisconsin-Madison

## Relative probability of increasing corn yield using a nitrification inhibitor

|                         | Time of nitrogen application |                 |                  |  |
|-------------------------|------------------------------|-----------------|------------------|--|
| Soil type               | Fall                         | Spring preplant | Spring sidedress |  |
| Sands & loamy sands     | Not recommended              | Good            | Poor             |  |
| Sandy loams & loams     | Fair                         | Good            | Poor             |  |
| Silt loams & clay loams |                              |                 |                  |  |
| Well drained            | Fair                         | Poor            | Poor             |  |
| Somewhat poorly drained | Good                         | Fair            | Poor             |  |
| Poorly drained          | Good                         | Good            | Poor             |  |

Note: Table was developed based on data collected in Wisconsin and the upper Midwest.






## Fall N applications

• Biggest concern – leaching and denitrification







# Fall N applications

- Should be avoided on:
  - Sandy soils
  - Other soils that have a high probability of leaching
     N to ground water
    - With the exception of fall seeded crops
- On silt loam soils, nitrate-containing fertilizers should be avoided



### Fall N applications

- Wait to apply fertilizer until soil is  $< 50^{\circ}$ 
  - Nitrification processes are dramatically reduced at low soil temperatures
- Nitrification inhibitors may be beneficial at reducing the potential for nitrate losses
  - However, likely provide a lower economic return than spring applications





Impact on N application timing and use of NServe on corn yield, seven-year average on a poorly drained Mollisol in Waseca, MN (Randall et al., 2003)

| N<br>Timing <sup>†</sup> | NServe <sup>‡</sup> | Yield | Income* | N Cost | NServe<br>Cost | Return |
|--------------------------|---------------------|-------|---------|--------|----------------|--------|
|                          |                     | bu/a  | \$/a    | \$/a   | \$/a           | \$/a   |
| Fall                     | No                  | 131   | 655     | 67.50  |                | 597.50 |
| Fall                     | Yes                 | 139   | 695     | 67.50  | 8              | 619.50 |
| Spring                   | No                  | 139   | 695     | 67.50  |                | 627.50 |
| Split                    | No                  | 145   | 725     | 67.50  |                | 657.50 |
| LSD (0.01)               |                     | 4     |         |        |                |        |

<sup>†</sup> 135 lb N/a was applied as anhydrous ammonia in all treatments. Split application had 40% of the N applied in the spring and 60% sidedressed at V8.

<sup>‡</sup>NServe was applied at a rate of 2 pt/a.

\* Calculations were based on \$5.00/bu corn, \$0.50/lb N, and \$32/gal of NServe.



Effect of Instinct and time of urea (100 lb N/a) application on corn grain and silage yield at Arlington, WI, 2011

| Timing       | Instinct          |            | Instinct             |            |
|--------------|-------------------|------------|----------------------|------------|
|              | Νο                | Yes        | Νο                   | Yes        |
|              | Grain Yield, bu/a |            | Silage Yield, T DM/a |            |
| Fall 2010    | 139               | 160        | 7.23                 | 7.84       |
| Spring 2011  | 149               | 161        | 7.57                 | 8.65       |
| Mean         | 144               | 161        | 7.40                 | 8.25       |
|              |                   |            |                      |            |
|              |                   | ANOVA      |                      |            |
| Source of    |                   |            |                      |            |
| variation    | p                 | LSD (0.10) | р                    | LSD (0.10) |
| Timing (T)   | 0.53              | ns         | 0.24                 | ns         |
| Instinct (I) | 0.09              | 16         | 0.10                 | 0.84       |
| Txl          | 0.65              | ns         | 0.62                 | ns         |





Carrie Laboski, Ph.D. CPSS, Assoc. Professor, Extension Soil Fertility Specialist

Effect of Instinct and time of manure application on corn grain and silage yield at Arlington, WI, 2011

| Timing       | Instinct          |            | Instinct             |            |
|--------------|-------------------|------------|----------------------|------------|
|              | Νο                | Yes        | Νο                   | Yes        |
|              | Grain Yield, bu/a |            | Silage Yield, T DM/a |            |
| Fall 2010    | 135               | 141        | 7.25                 | 7.54       |
| Spring 2011  | 135               | 156        | 7.15                 | 8.40       |
| Mean         | 135               | 149        | 7.20                 | 7.97       |
|              |                   |            |                      |            |
|              |                   | ANOVA      |                      |            |
| Source of    |                   |            |                      |            |
| variation    | р                 | LSD (0.10) | р                    | LSD (0.10) |
| Timing (T)   | 0.36              | ns         | 0.33                 | ns         |
| Instinct (I) | 0.11              | ns         | 0.07                 | 0.67       |
| TxI          | 0.33              | ns         | 0.23                 | ns         |

DEPARTMENT OF SOIL SCIENCE University of Wisconsin-Madison



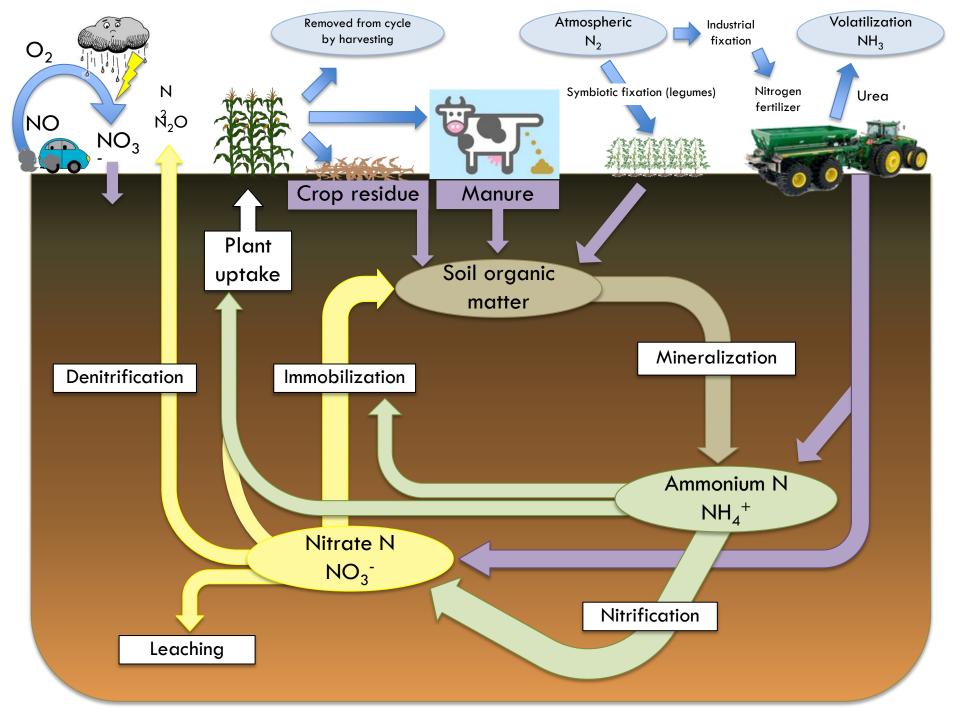
Carrie Laboski, Ph.D. CPSS, Assoc. Professor, Extension Soil Fertility Specialist

### Relative probability of increasing corn yield using a nitrification inhibitor

|                         | Time of nitrogen application |                 |                  |
|-------------------------|------------------------------|-----------------|------------------|
| Soil type               | Fall                         | Spring preplant | Spring sidedress |
| Sands & loamy sands     | Not recommended              | Good            | Poor             |
| Sandy loams & loams     | Fair                         | Good            | Poor             |
| Silt loams & clay loams |                              |                 |                  |
| Well drained            | Fair                         | Poor            | Poor             |
| Somewhat poorly drained | Good                         | Fair            | Poor             |
| Poorly drained          | Good                         | Good            | Poor             |

Note: Table was developed based on data collected in Wisconsin and the upper Midwest.






#### Topdressing in notill corn or grass pasture

• Biggest concern – ammonia volatilization







### Urea hydrolysis and N volatilization

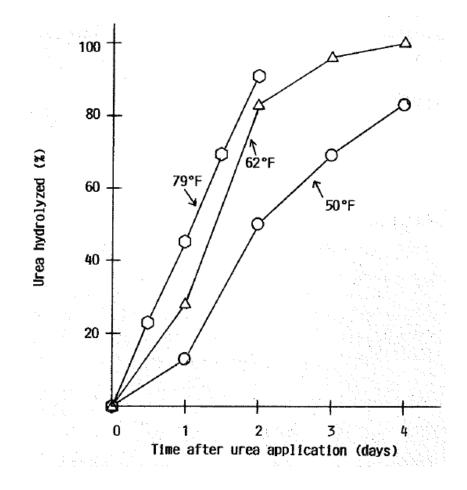
 $(NH_2)_2CO + 2H_2O \xrightarrow{\text{urease}} (NH_4)_2CO_3$  urea ammonium carbonate

 $(NH_4)_2CO_3 + 2H^+ \longrightarrow 2NH_4^+ + CO_2\uparrow + H_2O$ 

 $NH_4^+ + OH^- \longrightarrow NH_3\uparrow + H_2O$ 






# Soil & climatic condition favoring high NH<sub>3</sub> loss from surface-applied urea

- No rainfall after application
  - Significant N loss if no rainfall within 5 days of application
- High temperatures





## Urea hydrolysis is relatively quick and temperature dependent







# Soil & climatic condition favoring high NH<sub>3</sub> loss from surface-applied urea

- No rainfall after application
  - Significant N loss if no rainfall within 5 days of application
- High temperatures
- High soil pH (≥8.0)
- Intermediate humidity (50-90%)
- Low soil clay and organic matter
- Crop residue on soil surface



### Effect of NH<sub>3</sub> volatilization from surface-applied N fertilizer on corn and grass pasture yields

| Сгор          | N Source*        | % of added N lost as $\rm NH_3^{**}$ | Yield       |
|---------------|------------------|--------------------------------------|-------------|
|               |                  | %                                    | bu/a or T/a |
| Corn          | None             |                                      | 83          |
|               | Urea             | 16                                   | 122         |
|               | UAN (28%)        | 12                                   | 125         |
|               | Ammonium nitrate | 2                                    | 132         |
| Grass pasture | None             |                                      | 0.74        |
|               | Urea             | 19                                   | 1.09        |
|               | Ammonium nitrate | 1                                    | 1.30        |

 \* N sources surface applied at 50 & 100 lb N/a for corn and 60 lb N/a for grass pasture. Corn yields are averages of both N rates.
 \*\* NH<sub>3</sub> loss determine by field measurement.

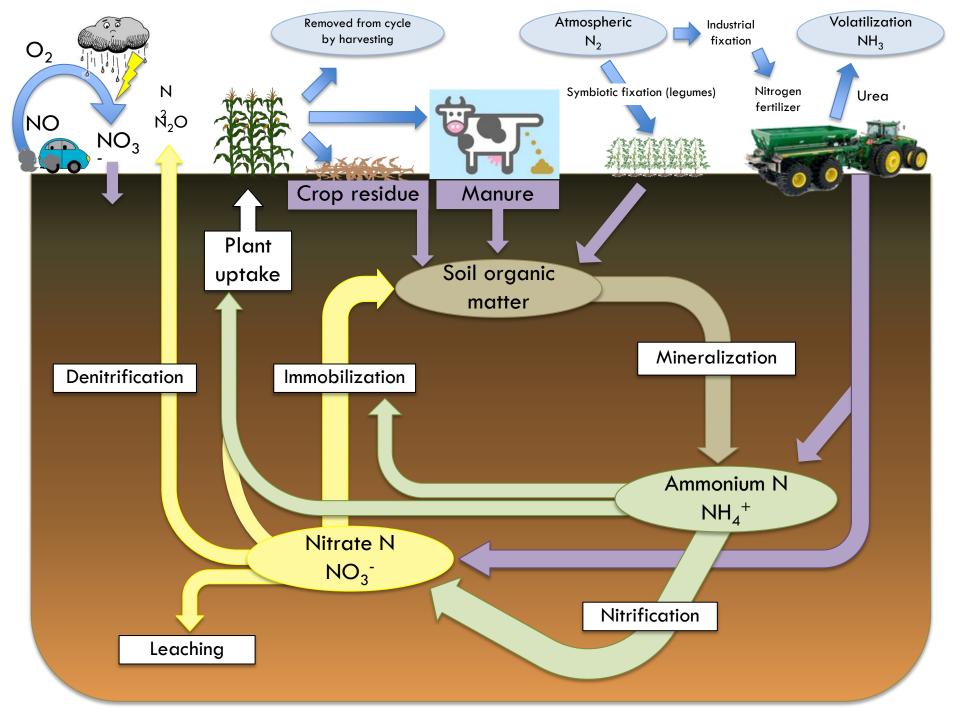
From Oberle and Bundy, 1984.



### Management considerations

- Is a non-urea based N source available?
- Is 0.25" of rain forecast within the next 2 days?
   Or do you have the ability to irrigate?
- Is a urease inhibitor economical?






### Sandy soils

• Biggest concern –  $NO_3^-$  leaching







### Managing to reduce leaching

- Time of application
- Fertilizer materials
- Use of inhibitors





### Effect of timing and use of nitrification inhibitors on corn yield and N recovery, 4-year average at Hancock, WI

| Inhibitor | Timing | Yield | Recovery |
|-----------|--------|-------|----------|
|           |        | bu/a  | %        |
| No        | PP     | 116   | 37       |
|           | SD     | 134   | 63       |
| Yes       | PP     | 121   | 51       |
|           | SD     | 134   | 65       |

All treatments received 140 lb N/a

PP = preplant

SD = sidedress

Sidedress applications are preferred to nitrification inhibitors on sandy soils.





### Fertilizer materials

- NH<sub>4</sub><sup>+</sup> forms preferred
- Urea must be incorporated
   Tillage or ¼" rain/irrigation within 2 days
- Polycoated urea (eg ESN)





## N source & timing effects on corn grain yield at Hancock, WI

| N Source   | N Timing    | Year  |             |        |
|------------|-------------|-------|-------------|--------|
|            |             | 2003  | 2004        | 2005   |
|            |             |       | Yield, bu/a |        |
| Control    |             | 107   | 115         | 96     |
| PCU (ESN)  | РР          | 204NS | 167 c       | 186 ab |
|            | PP+4 wk     | 205   | 180 b       | 189 a  |
| Amm. Sulf. | РР          | 196   | 132 e       | 175 b  |
|            | PP+DCD      | 202   | 136 e       | 183 ab |
|            | 4 wk & 8 wk | 194   | 181 b       | 180 ab |

Yields are the average of 150 and 200 lb N/a rates.

PP = preplant

of Wisconsin-Madison

PP + 4 wk = split applications at preplant & 4 wk

PP + DCD = preplant + DCD nitrification inhibitor

4 wk & 8wk= split applications at 4 wk & 8 wk after planting

Years with normal or < normal rainfall, ESN is = or > SD or split amm. sulf. or urea

Years with excessive early rainfall:

- DCD provided no benefit
- ESN preplant > other
   N sources preplant
- Split amm. sulf > preplant ESN



Contact Info:

Carrie Laboski

laboski@wisc.edu

608-263-2795

www.soils.wisc.edu/extension/

Carrie Laboski, Ph.D. CPSS, Assoc. Professor, Extension Soil Fertility Specialist

Connect with me on Linked in



 $\mathbf{R}$