Phosphorus in Agriculture What we know, what we need to know

Dr. Albert L. Sims Soil Scientist University of Minnesota Northwest Research and Outreach Center Crookston, Minnesota

Phosphorus Management

- Based on 4 basic factors
 - Science
 - Soil P chemistry --- Soil P availability
 - Crop response
 - Philosophy
 - How do you view the world/ cropping operation
 - Economics
 - Business decisions to minimize risk
 - Environmental Implications
 - Will what we do impact our neighbors?

The Science

Phosphorus in the Plant

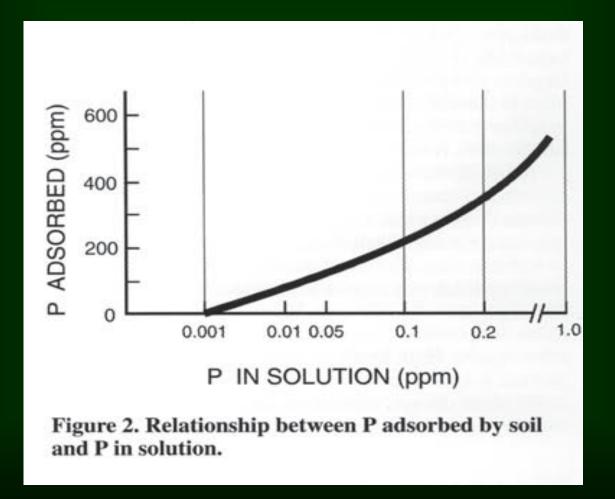
- P is essential nutrient in plant
 - One of 16 known essential nutrients
 - One of 6 Macro nutrients
- P conc in plant --- 0.1 to 0.4%
 - Significant component of:
 - DNA and RNA
 - Cell membrane structure
 - Energy Transfer within cell

Phosphorus in the Plant

- 2nd or 3rd most limiting in crop production
 After N and sometimes K
- Plant absorbs P from the SOIL SOLUTION $- H_2 PO_4^-$ or HPO_4^{2-}
- P is mobile in the plant
 - When deficient
 - Translocates P from older tissues to young tissue
 - Visual symptoms often difficult to discern
 - Purpling color, dark green color, retarded growth, lack of tillering

Phosphorus in the Soil

- Surface soils: 0.02 to .10% P
 - Very limited mobility in soil
 - Very little P in soil solution
 - Most P in soil solids


- Active P: readily supplies soil solution

– Fixed P: organic or inorganic P

- Solution, Active, and Fixed P in equilibrium
- Soil solution quickly depleted by crop
 - Must be quickly and readily resupplied
 - Intensity or Buffering capacity

Soil Solution P $\overleftarrow{}$ Active P $\overleftarrow{}$ Fixed P

Relationship of Soil Solution P to Sorbed P



Adapted from Busman et al., Minn. Ext. Service FO-6795-B

- Root acquisition of P is effected by:
 - Distance between Root and P
 - Time required to traverse that distance
- Distance between Root and P Determined by:
 - Placement of P in the soil relative to root
 - Managed by P application amount and placement
 - Root growth through the soil profile

Root growth inhibited by cold temperatures

Nagel K.A. et al. (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Functional Plant Biology, 36, 947-959

Length of taproot (A), total length of lateral roots (B), number of lateral roots (C) and branching angle between taproot and lateral roots (D). Plants were exposed to a uniform root temperature (10°C, 15°C or 20°C, respectively) or a vertical gradient in root temperature 20-10°C (mean value +/- SE, n=11-23). Kerstin A. Nagel, Bernd Kastenholz, Matthias Mühlich, Hanno Scharr, Ulrich Schurr and Achim Walter, Forschungszentrum Jülich 2008

- Time to traverse the Distance Effected by Diffusion Rate
 - P moves to root surface by diffusion
 - Diffusion over very short distances
 - Diffusion rate controlled by:
 - Concentration gradient
 - » Difference between high conc. zone (soil solution) and low conc. zone (root surface)
 - Temperature
 - » Lower temp = slower diffusion

 P uptake as affected by temperature and concentration gradient

	Soil Temperature (° F)				
P rate	59 68 77				
lbs P ₂ O ₅ /acre	mg P/pot				
35	3.5	10.4	18.0		
70	6.7	13.5	19.6		

Adapted from G. Rehm, June 29, 2009, Agbuzz, Univ. of Minn.

Soil P Chemistry

- Fertilizer increases solution P concentration
 - P rapidly leaves soil solution
 - Binds to surfaces of minerals
 - Precipitates (absorption into Ca-P, AI-P, Fe-P)
- Initially, bound and precipitated P readily resolubilizes
 Active P or Labile P
- In time, precipitated P can form new, less soluble compounds.
 - Fixed P or Non-labile P
 - Depends on soil chemical characteristics
 - May take weeks, may take years.

Phosphorus Availability and Soil pH

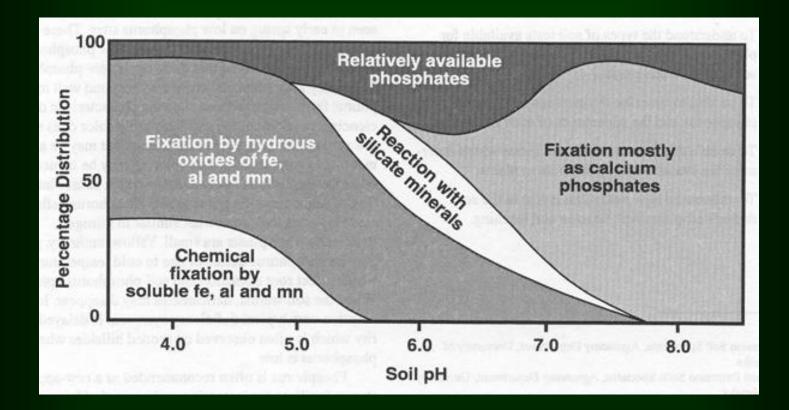
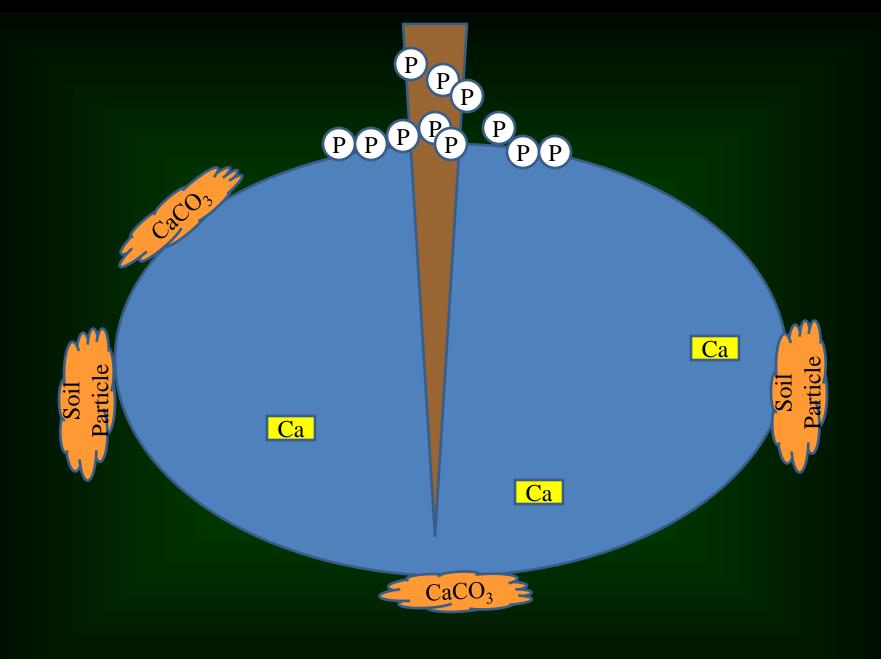



Image from plantandsoil.unl.edu/croptechnology/2005

Soil P Chemistry

- The crop might recover only 20-30% of the P applied
- What happens to the rest?
 - Some remains in Active P pool
 - Some chemically migrates to Fixed P pool
 - "P fixation capacity"
 - Amt and rate of this migration depends on soil characteristics/properties.

Dicalcium-P Octacalcium-P Tricalcium-P Hydroxyapatite Fluorapatite

Increasing Time

Decreasing Solubility

How do we know if we need to add fertilizer?

- Soil Testing for P
 - Soil Samples
 - Send to laboratory for Analysis
 - Chemical extractant and extracting procedure
 - Extracts P from the soil sample (ppm P)
 - Many extractants and procedures available
 - Only a few are useful
 - Tested through extensive research: Correlation and Calibration
 - » Extracted P must correlate with crop growth
 - » Extracted P indicates likely response to fertilizer
 - In Minnesota:
 - Bray P1 used on soils with pH less than 7.4
 - Olsen NaHCO₃ used on soils with pH 7.4 or greater

Soil Testing for P

- P Soil Test:
 - Not a direct measure of labile or total P
 - It's an index value
- P Soil Test does not predict yield!
 Predicts probability of response to applied fertilizer
- Field Calibration gives meaning to P Soil Test Value
 - Critical value
 - Interpretation class
 - Fertilizer rates when STP in responsive range

Example of STP Calibration

Dodd & Mallarino, 2005

Slide courtesy of Antonio Mallarino, ISU

Minnesota STP Categories

	STP Category							
Extractant	Very Low	Low	Medium	Very High				
	ppm P extracted							
Bray-P	0-5	6-11	12-15	16-20	21+			
Olsen-P	0-3	4-7	8-11	12-15	16+			

Probability Crop will Respond to Fertilizer


STP Category	Iowa	Wisconsin	North Dakota
	% pro		
Very Low	> 80	> 90	> 80
Low	65	60-90	50-80
Optimum/Medium	25	30-60	20-50
High	5	5-30	10-20
Very High	< 1	< 5	< 10

How Much Fertilizer based on Soil Test P

		STP (ppm P)									
		V. L	JOW	Lo)W	Med	Medium Hi		gh	V. High	
Bray P		0-	-5	6-	10	11-	-15	16-20		21+	
Olsen F		0-	-3	4-	-7	8-	11	12-	-15	16+	
Yield g	oal	Bdcst	Band	Bdcst	Band	Bdcst	Band	Bdcst	Band	Bdcst	Band
bu.	/A	P ₂ O ₅ per acre to apply (lbs. per acre)									
< 1	00	60	30	40	20	25	20	15	10-15	0	10-15
100-	124	75	40	50	25	30	20	15	10-15	0	10-15
125-	149	85	45	60	30	35	25	15	10-15	0	10-15
150-	174	100	50	70	35	40	30	15	10-15	0	10-15
175-	199	110	55	75	40	45	30	15	10-15	0	10-15
200)+	120	60	85	45	50	35	15	10-15	0	10-15

Band vs Broadcast

Broadcast

Soil Surface

Depth of Incorporation

Banding used less P

Increased P Concentration Gradient

Placed P closer to plant root

Perhaps reduces P exposure to soil P fixing capabilities

Band

Band vs Broadcast P Fertilizer

P³² Trial

	Sampling times				
lbs. P ₂ O ₅ /acre	1 2 3				
	% P from fertilizer				
20 band	23.8	13.4	11.9		
40 bdcst	2.8	5.1	8.6		
80 bdcst	4.4	7.5	11.8		

Caldwell and MacGregor: adapted from G. Rehm, Feb 24, 2009, Agbuzz, Univ. of Minn.

The Philosophy

Two Main Philosophy of P Management

- Sufficiency Philosophy
 - Fertilizer the Crop
 - Apply what the crop will need this year
- Build and Maintain Philosophy
 - Fertilizer the Soil
 - Build STP level to or above critical level
 - Maintain STP at that level
- Both use Soil Test P
 - Use it for different objectives

Sufficiency Philosophy

- Soil Test P (STP) used to:
 - Determine if fertilizer is needed
 - Determine fertilizer rate to optimize production
- Generally requires vigilance in P management
 - Annual soil testing
 - Must make sure soil test represents the field
 - Soil sampling procedures
 - Whole field sample, zone sampling, grid sampling, etc.
- Fertilizing the crop
 - Allows for banding instead of broadcasting fertilizer
 - Can significantly reduce fertilizer input

Sufficiency Philosophy

- Lower STP
 - P recommendations tend to be liberal
 - Supply P for inherent soil needs
 - Supply P for the crop
- Higher STP
 - P recommendations tend to be conservative
- Over time, tends to build to and maintain medium STP level
 - Not necessarily the case in soils with HIGH P fixing capacity
- Relies on soil P reserves to contribute to crop

Build and Maintain Philosophy

- Presumes high level of P fertility will maximize crop production potential
- Soil Test P used to:
 - Monitor soil fertility level
 - P rates applied:
 - Amt required to build STP
 - Amt required to maintain STP
 - Frequently based on crop removal
- Less intensive management required
 - More tolerant of soil sampling errors
 - Mainly monitor the soil's fertility status

Build and Maintain Philosophy

- Fertilizing the Soil
 - Build STP to or above Critical value
 - Primarilty interested in STP response to fertilizer
 - Less interested in crop response to fertilizer
- Presumes to build and/or preserve soil P reserves
- Will not necessarily work on high P fixing soils

- Lets assume if P is limiting it is good economics to apply P fertilizer.
- The question is what is the most economical management philosophy by which that P fertilizer should be applied?

Long term trials in Nebraska and Minnesota

- Established plots
 - Soil samples sent to various soil testing labs anonymously
 - Commercial Labs
 - Primarily used Build and Maintain
 - University Labs
 - Primarily used Sufficiency
- Plots fertilized in strict accordance to recommendations.
 - Complete fertilizer program
 - Not just P fertilizer

Long term trials in Nebraska (total fertilizer program)

	Mead		North	Platte	Clay Center		Concord	
	Annual Average (1973-1980)							
	Bu/A	\$/A	Bu/A	\$/A	Bu/A	\$/A	Bu/A	\$/A
Lab A	160	65	169	52	191	65	94	26
Lab B	160	57	169	53	191	55	94	24
Lab C	160	75	169	67	191	61	94	30
Lab D	160	48	169	42	191	42	94	28
Univ.	160	34	169	24	191	30	94	12

Long term trials in Minnesota (Total fertilizer program)

	Waseca				
	Total value (1980- 1987)				
	Crop Fertilizer Value \$ Cost \$				
Lab A	2657	436			
Lab B	2676	547			
Lab C	2659	344			
Univ.	2666	295			

Medium Soil Test Trial, WCROC (Specific to P fertilizer)

Treatment	P_2O_5	Cost	Yield
	- lbs/acre -	- \$/acre -	- bu/acre -
0 P	0	0	169
Crop Removal	49	22.05	174
U of M Bdcst	35	15.75	175
U of M band	25	11.25	175

Rehm: adapted from G. Rehm, Feb 24, 2009, Agbuzz, Univ. of Minn.

Economic Implications

- Data indicate Sufficiency is most economical approach
 - Similar crop yields --- lower fertilizer costs
 - Maximum return for \$ spent on fertilizer
- Some argue these trials have little relationship to today
 - Yields are consistently higher than in 1970s & 1980's
 - More P is being removed in grain
 - 165 bu corn: approx. 72 lbs P_2O_5
 - 240 bu corn: approx. 105 lbs P_2O_5
 - Are current yield levels sustainable if we do not replace P removed in the crop?

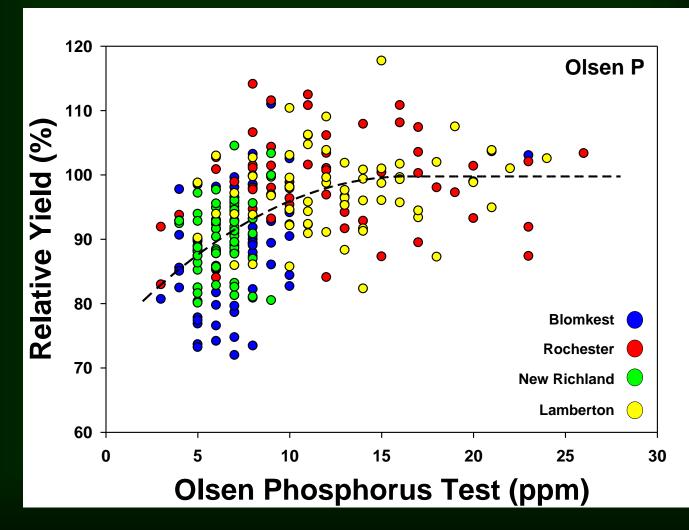
Economic Implications

- Sufficiency recommendations
 - STP is medium
 - 165 bu: Prate = 40 lbs P_2O_5
 - 240 bu: P rate = 60 lbs P_2O_5
 - Monitor STP

- If STP lowers, increase P rate

- If STP increases, decrease P rate
- Build and Maintain recommendations
 - Assume STP built to critical or target level
 - 165 bu: Prate = 72 lbs P_2O_5 +
 - 240 bu: Prate =103 lbs. P_2O_5 +

- STP will monitor status


Economic Implications

- Current research shows both will get you production
- Current research suggests Sufficiency is more economical
 - \$ return for \$ spent on P fertilizer
- Build and Maintain is less management intensive
 - Is it worth the extra \$ on fertilizer?
- Which philosophy to use?
 - It appears to be a business decision, not necessarily a scientific decision

Is one philosophy better than the other?

- Several Questions need to be answered
 - To what STP level should we build?
 - What is the critical value
 - Is it higher now than older research indicates?
 - Yield potential difference between the two philosophies?
 - Is there a yield potential difference between the two philosophies?
 - Long-term field trials are necessary to determine sustainability concerns

Current Minnesota Research

Kaiser et. al. 2012

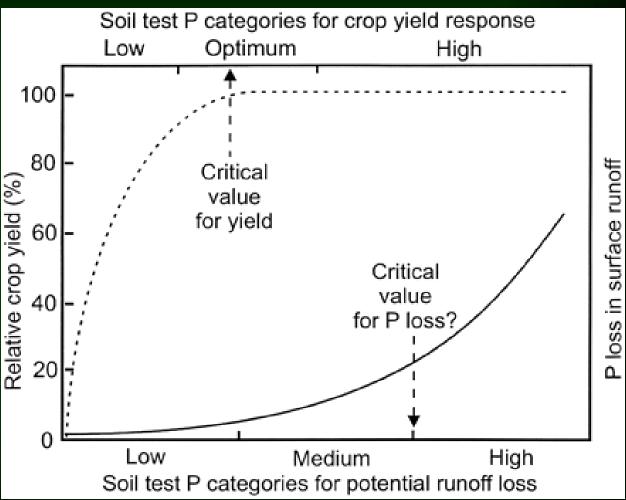
Kaiser et al., 2012

	Relative Yield		
	95%	98%	100%
	ppm		
Bray-P1	9.7	15.0	18.3
Olsen-P	9.3	12.0	16.0
Mehlich-3	15.3	23.5	29.3

Is there a limit to how far we can go?

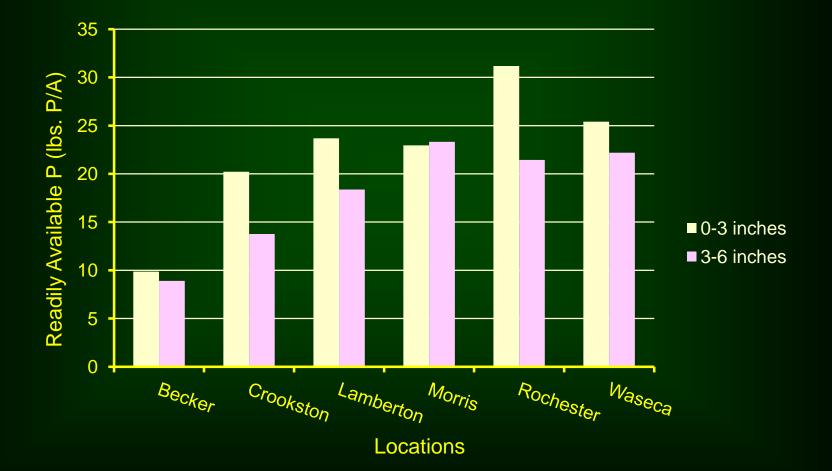
- Must be aware of the impact of our decision:
 - Economical considerations
 - Sustainability considerations
 - Both production and use of a limited resource
 - Impact on our surroundings
 Surface water contamination with P

Environmental Implications


- Mainly concerned about P movement into surface waters.
 - Causes over growth of water algae and plants
 - Upon decomposition O₂ in the water is depleted

P moving off the field

- P movement in two forms
 - Soluble P
 - P diffusing into the flowing water
 - USUALLY FROM SURFACE 1-2 INCH OF SOIL
 - Particulate P
 - P attached to or precipitated in soil
 - Usually lost through erosion


Critical STP (Crop Production vs P Runoff)

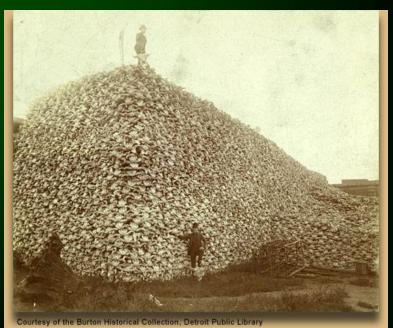
- Appears to be a separation of critical STP for crop production and that for P loss
- Use of Best Management Practices are essential
- STP for crop production is usually from surface 6 inches. P loss normally from surface 1-2 inches.

McDowell et. al. 2002. Acquired from Hart et. al. 2004

Where in soil profile is P located

Sims et. al., 2012

Manage P to Optimize Production and Protect the Environment


- Best management practices
 - Manage STP levels
 - Reduced or limit water runoff and soil erosion
 - Make sure P is below the soil surface
- Be aware of other issues surrounding phosphorus
 - Depletion of rock phosphate resources
 - Environmental issues associated with manufacturing and shipping of P fertilizer
 - Increased P fertilizer costs

Phosphorus Fertilizers

- TVA was instrumental in developing modern P fertilizer industry.
- Phosphate Rock (mined) treated with strong acid
 Results in more soluble P material
- Today most P fertilizers are ammonium phosphates
 Liquids
 - Granule
 - All are highly soluble in the soil
 - Readily available

Phosphorus Fertilizers

- Phosphate Fertilizer Industry has had major impact on our culture
- Original fertilizers were organic
 - Manures
 - Farm animals
 - Guano from coastal island
 Seabird poop
 - Bones
 - Crushed
 - Treated with Sulfuric Acid
 - P was more soluble

Phosphorous Fertilizers

- Manures shipped to England and North America
- Manures were dried and placed in containers before shipping
 - Lighter and better shelf life
 - Sometimes water got into the ship's cargo hold.
 - Water mixed with dry manure
 - Fermentation
 - Methane production
 - Once they realized what was happening, all containers were stamped with:
 - Stow High In Transit

S.H.I.T.