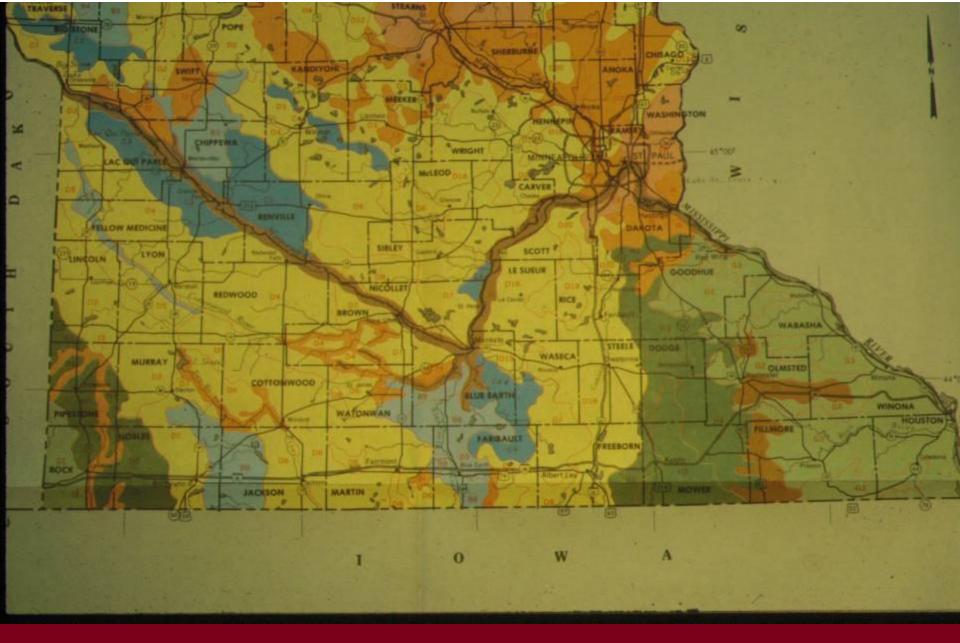
Maximizing Yield While Minimizing Nitrate Loss

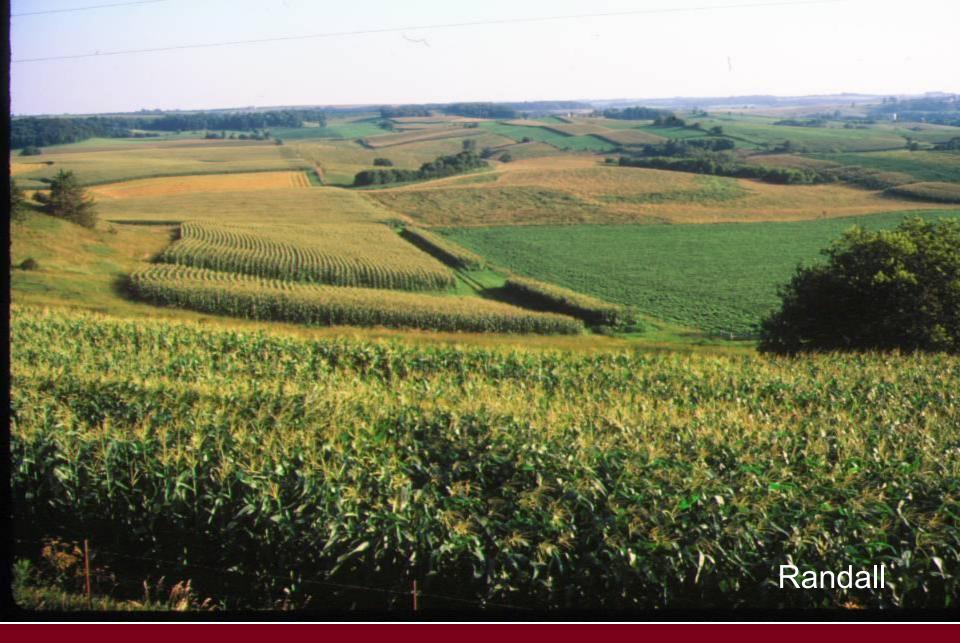
Jeff Vetsch and Gyles Randall Univ. of Minnesota Southern Research and Outreach Center Waseca, MN 56093

Minnesota Agriculture and Nitrates Forum, July 25, 2012 Rochester, MN



Nitrogen

- Required at higher rates than any other nutrient for optimizing corn yield and profitability
- More than 600,000 tons of N are applied for corn each year in Minnesota.



UNIVERSITY OF MINNESOTA Driven to Discover™

University of Minnesota Driven to Discover™

University of Minnesota Driven to Discover™

UNIVERSITY OF MINNESOTA Driven to Discover™

University of Minnesota Driven to Discover™

Region Specific BMPs for N

Northwest

Southwest and West Central Central and East Central

Southeast

South Central

BMP'S (Best Management Practices)

Three management categories

- Recommended
- Acceptable, but with risk
- Not recommended

RISK

Economic and Environmental

UNIVERSITY OF MINNESOTA Driven to Discover™

Management Practices

- 1. Cropping system
- 2. Rate of N application
- 3. Time of N application
- 4. Nitrification inhibitors
- 5. Source of N (Fert. & Manure)
- 6. Cover Crops
- 7. Tillage (have data, not presented here)

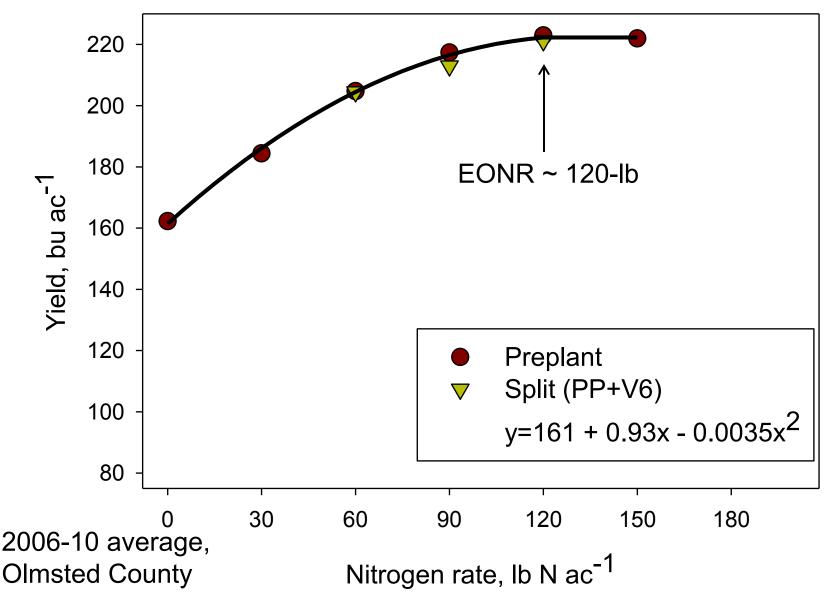
Effect of CROPPING SYSTEM on drainage volume, NO₃-N concentration, and N loss in subsurface tile drainage during a 4-yr period (1990-93) in MN.

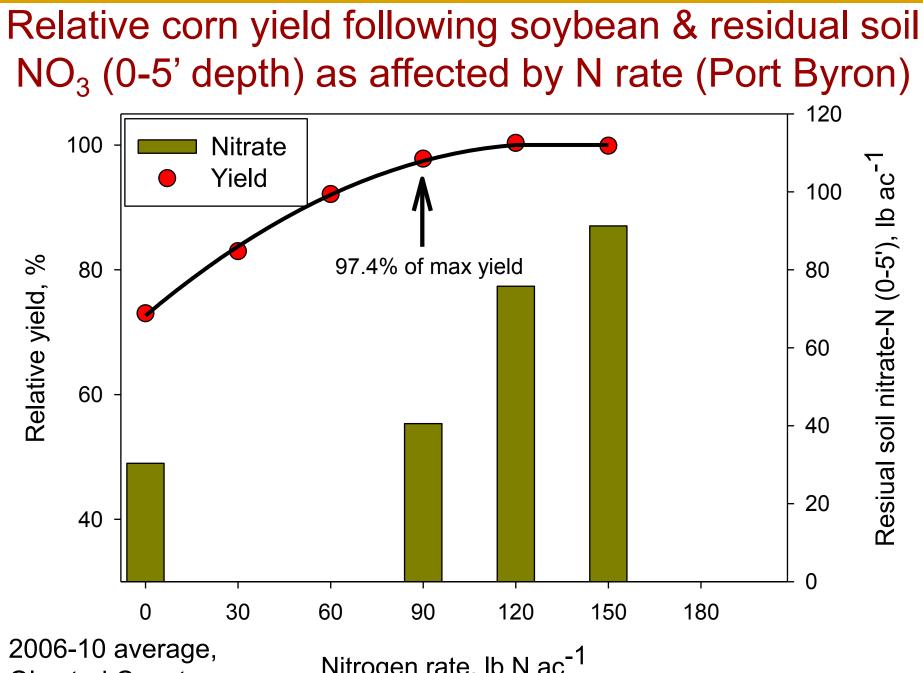
Cropping	Total	Nitrate-N	
System	discharge Conc. Los		Loss
	Inches	ppm	lb/A
Continuous corn	30.4	28	194
Corn – soybean	35.5	23	182
Soybean – corn	35.4	22	180
Alfalfa	16.4	1.6	6
CRP	25.2	0.7	4

UNIVERSITY OF MINNESOTA Driven to Discover™

Conclusions

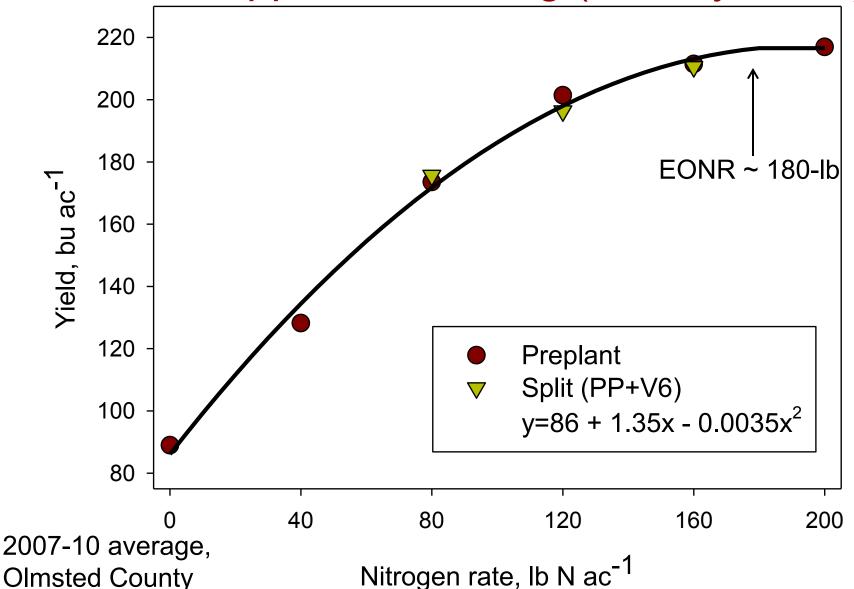
- Cropping system has greater effect on hydrology and nitrate losses than any other management factor! (RISK)
- Perennial crops (alfalfa and grasses) compared to row crops (corn and soybean) reduce
 - Drainage volume by 25 to 50%
 - –Nitrate loss by > 95%

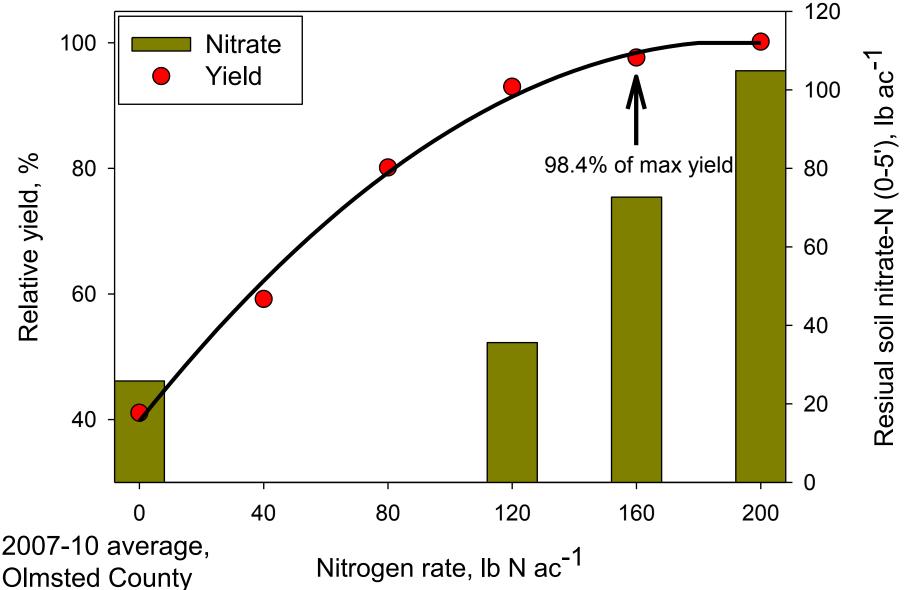



Rate and Time of N Application

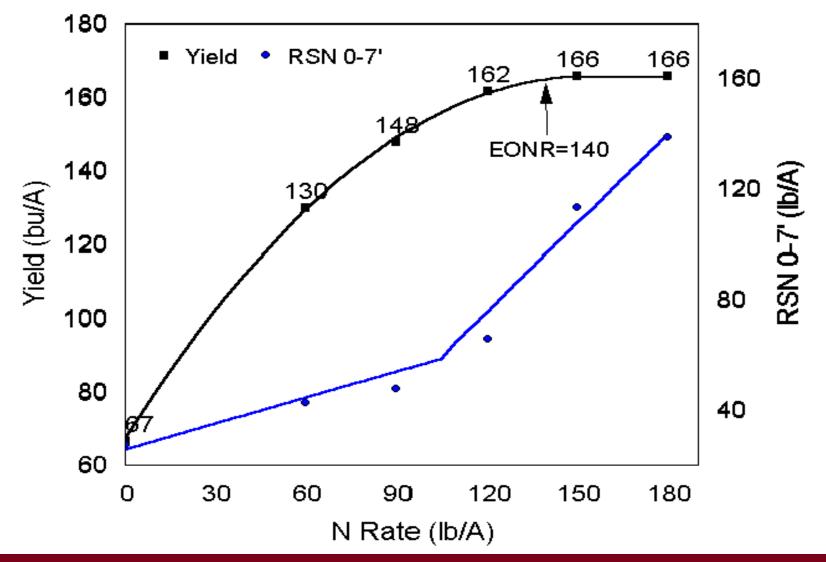
UNIVERSITY OF MINNESOTA Driven to Discover[™]

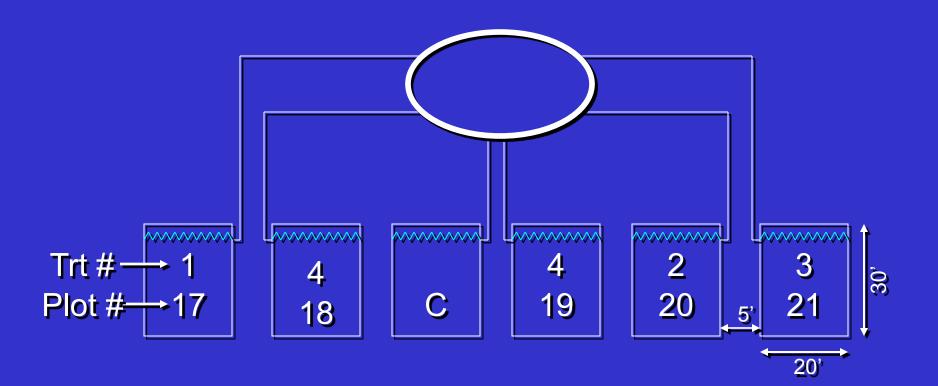
Corn grain yield following soybean as affected by N rate and application timing (Port Byron sil)



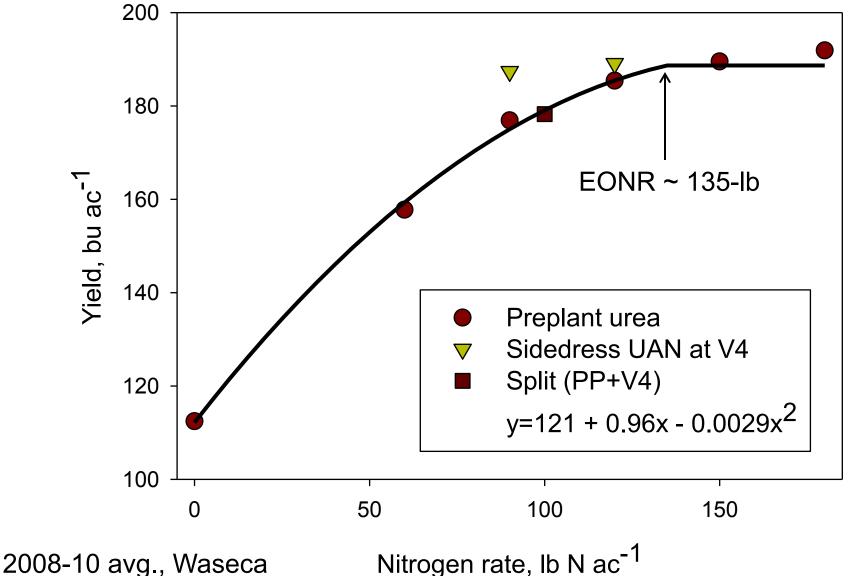

Olmsted County

Nitrogen rate, lb N ac⁻¹


Corn grain yield following corn as affected by N rate and application timing (Port Byron sil)


Continuous Corn, 2001–03 Olmsted Co.

UNIVERSITY OF MINNESOTA Driven to Discoversm


Corn-Soybean Rotation Drainage Study, Waseca

Corn grain yield following soybean as affected by N rate and application timing (Webster cl)

Nitrogen products and their purpose

Chemical or Compound	Common Product Names	Process Affected
Dicyandiamide (DCD)	Guardian®	Nitrification
Nitrapyrin	N-Serve [®] , Instinct [®]	Nitrification
NBPT	Agrotain®	N volatilization
NBPT + DCD	Agrotain [®] Plus, SuperU [®]	Nitrification, N volatilization
ATS (0.1% by volume)	Ammonium thiosulfate	N Volatilization
Polymer-coated urea (PCU)	ESN [®] , Polyon [®] , Duration [®]	N release
Malic+itaconic acid co-polyme	Nitrification, N volatilization	

adapted from Hergert et al.

http://cpc.unl.edu/includes 2011/pdf/Enhanced Efficiency Fertilizers.pdf?exampleSessionId=1229904069000& exampleUserLabel=Your%20Namestic terms and the second se

Time and Rate of N Application and Nitrification Inhibitors (N-Serve)

UNIVERSITY OF MINNESOTA Driven to Discoversm

Effect of time of AA application and N-Serve on corn yields after soybean from 1987-2001 at Waseca

	Time of N Application		
Parameter	Fall	Fall+N-Serve	Spring
15-Yr Avg. Yield (bu/A)	144	153	156
15-Yr Avg. FW NO ₃ -N Conc. (mg/L)	14.1	12.2	12.0
15-Yr N recovery in grain (%)	38	46	47
7-Yr Avg. Yield (bu/A)*	131	146	158

* Seven years when statistically significant differences occurred.

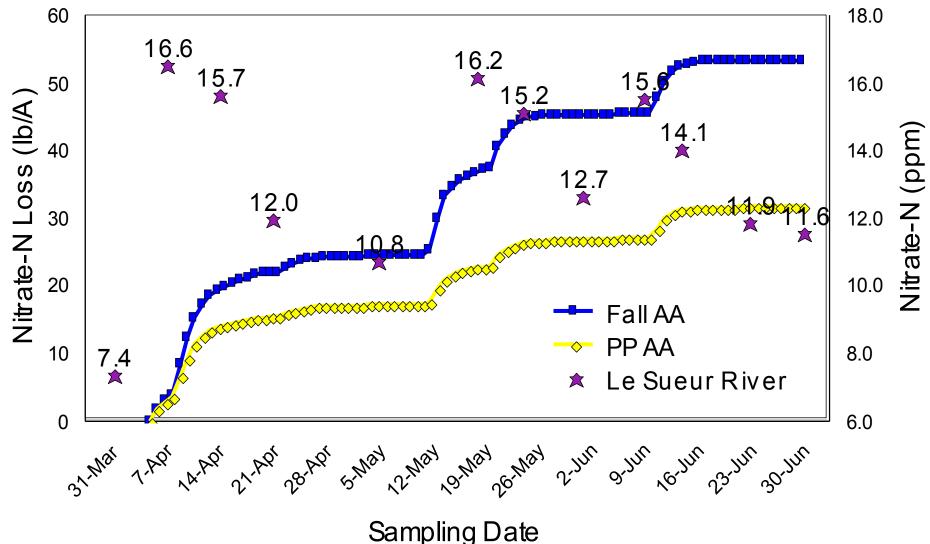
Conclusions

- Adding a nitrification inhibitor (N-Serve[™]) to fall-applied anhydrous increased corn yield and NUE, while reducing nitrate concentration in tile drainage.
- A preplant application of anhydrous increased yield an average of 12 bu/ac in 7 of 15 years (wet springs) at Waseca.

Nitrate-N concentrations and losses in tile water as affected by rate and time of N application at Waseca.

			FW	20	000-20	03
N application		_	NO ₃ -N	NO ₃ -N Lost		ost
Rate	Time	N-Serve	Conc.	С	Sb	Total
lb N/A			mg/L	lb/A/4 cycles		
80	Fall	Yes	11.5	115	90	205
120	Fall	Yes	13.2	121	99	220
160	Fall	Yes	18.1	142	139	281
120	Spr.	No	13.7	121	98	219

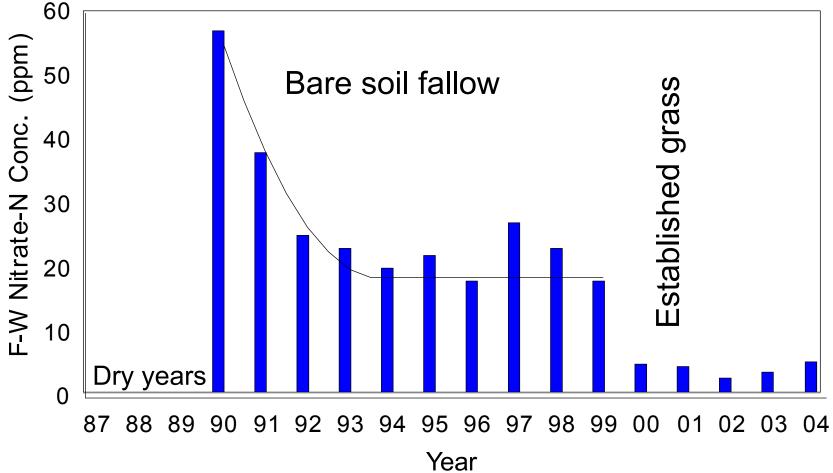
Ef	fect of	N rate	e on yield	of corn af	ter soybean, n	et	
re	eturn to	o fertil	izer N, ar	nd nitrate-N	l concentratio	n	
	in tile drainage at Waseca (2000–2003).						
	N Treatment			4-Yr Yield	4-Yr FW		
	Time	Rate	N-Serve	Avg.	NO ₃ -N conc.		
		lb /A		bu/A	mg/L		
		0		111			
	Fall	80	Yes	144	11.5		
	Fall	120	Yes	166	13.2		
	Fall	160	Yes	172	18.1		
	Spr.	120	No	180	13.7		


Conclusions

- Nitrate losses were reduced 27% by decreasing the application rate from 160 lb N/A to the recommended rate of 120 lb N/A for corn after soybean without reducing yield.
- Nitrate losses were reduced 14% by decreasing the application rate to 80 lb N/A from the recommended 120-lb rate BUT vields were reduced by 17%.

ven to Discover^s

1999 tile water NO_3 -N loading at Waseca vs. NO_3 -N concentrations in the Le Sueur River 2.3 miles from Mankato.



Management Practices1. Cropping system

- 2. Rate of N application
- 3. Time of N application
- 4. Nitrification inhibitors
- 5. Source of N (Fert. & Manure)
- 6. Cover Crops
- 7. Tillage (have data, not presented here)

Nitrate losses in tile drainage water from soil mineralization.

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Source of N

Fertilizer N vs. manure

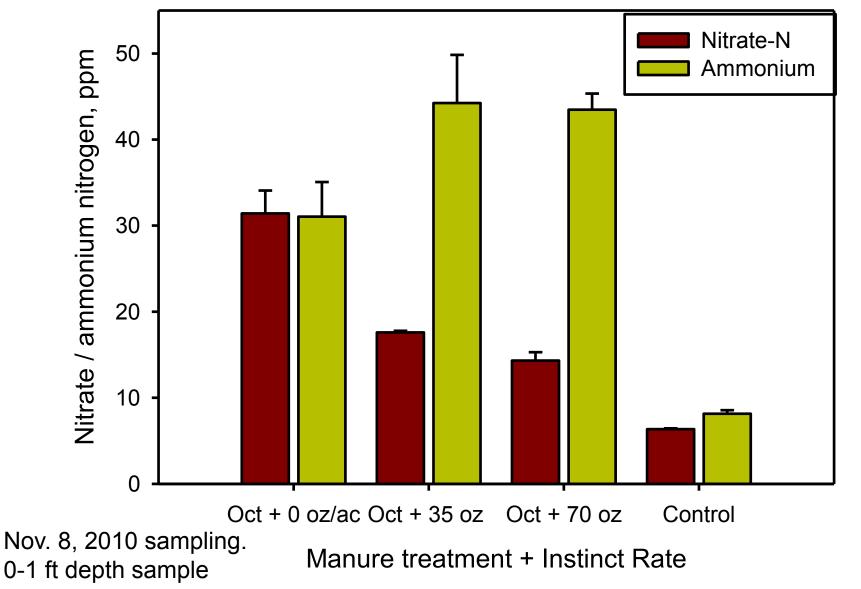
UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Results for Instinct[™] Applications with Manure

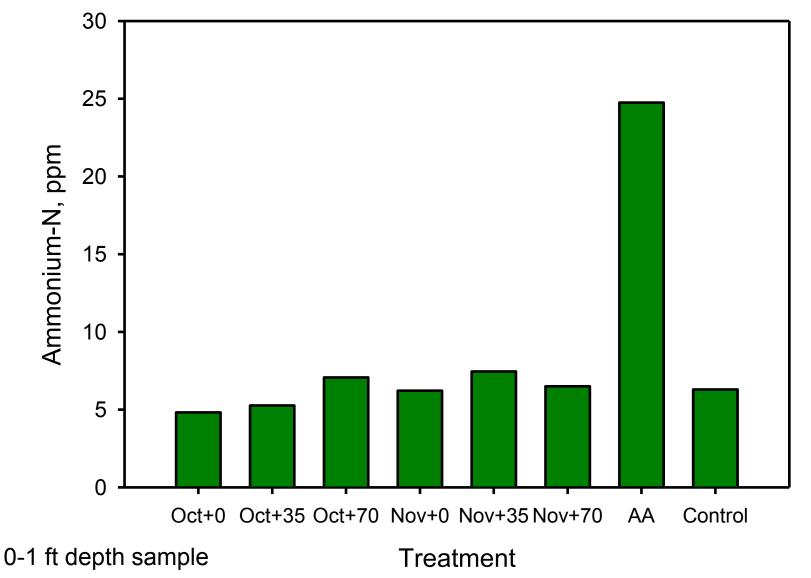
UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

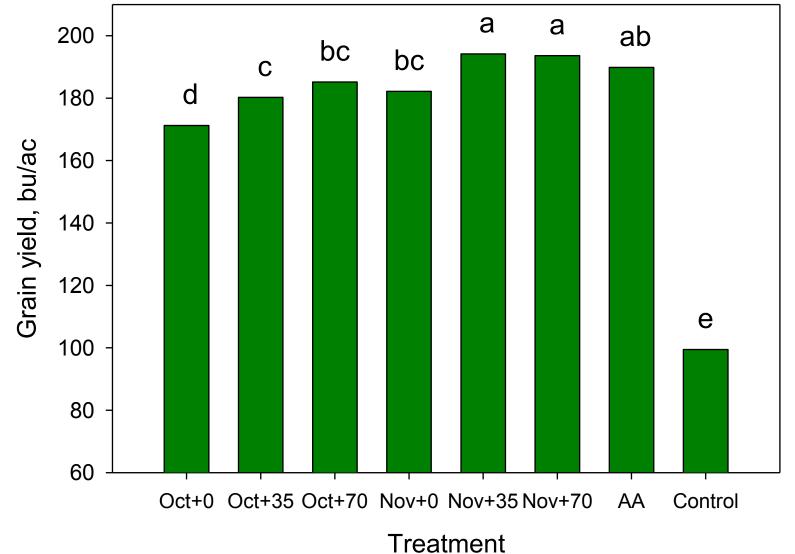
2011 Methods for manure study

- Treatments (8)
 - Two manure application timings: Oct. 5 & Nov. 5 of 2010.
 - Manure rate [2440 (Oct) & 2700 gal/ac (Nov)] was adjusted based on the manure analysis from each application timing to give 120 lb of available N/ac based on 80% availability if sweep injected.
 - Three rates of Instinct (0, 35, and 70 oz./ac)
 - 120 lb N/ac as AA w/N-Serve on Nov. 5
 - Control (zero N)



Precipitation and temperature (air and soil) departures from normal.									
Parameter	Sep	Oct	Nov	Apr	May	Jun	Jul	Aug	Sep
	Departures from normal								
Precip. inch	9.5	-1.5	0.1	1.2	0.7	1.0	2.7	-3.7	-2.3
Air temp. F	-1.3	3.3	1.8	-1.1	-1.4	0.8	5.0	1.1	-0.6
4" soil temp.	-2.7	4.9	1.4	0.5	-3.6	-0.3	3.5	3.8	1.5


Deep snowpack resulted in 3-4" of tile drainage in March.


Soil NO₃-N and NH₄-N as affected by October swine manure application and InstinctTM rate.

Soil NH₄-N on June 1, 2011 as affected by manure application timing and InstinctTM rate.

Corn grain yield as affected by manure application timing and Instinct[™] rate.

Table 1. Corn grain moisture and yield as affected by swine								
manure application timing and Instinct rate at Waseca.								
	Manure		Instinct™	Avail. N	Grain		Grain	
Trt	Timing	Rate	Rate	Rate*	H_2O		Yield	
#		gal/ac	oz/ac	lb N/ac	%		bu/ac	
1	Oct	2700	0	120	25.4		171	
2	Oct	2700	35	120	23.6		180	
3	Oct	2700	70	120	23.4		185	
4	Nov	2440	0	120	24.2		182	
5	Nov	2440	35	120	23.6		194	
6	Nov	2440	70	120	23.4		194	
Manu	ure appli	cation t	iming					
October 5					24.1	а	179	b
November 5					23.7	а	190	а
Instir	nct rate							
Zero					24.8	а	177	b
35 oz/ac					23.6	b	187	а
70 c	70 oz/ac				23.4	b	189	а
Interactions (P > F)								
Manure timing × Instinct rate0.4290.762								
* Manure rate equals 120 lb of available N/acre, based on								
80% availability for sweep injected swine finishing manure.								

Observations: Yield data

- Delaying application of manure from October to November increased corn grain yields 11 bu/ac in this warmer than normal fall/year.
- The addition of Instinct to fall-applied swine manure increased yields from 10 to 12 bu/ac and decreased corn grain moisture.
- November application of swine manure with Instinct produced similar yields as fallapplied anhydrous ammonia with N-Serve.

Acknowledgement

 Funding for Instinct research projects at the Univ. of Minnesota SROC was provided by Dow AgroSciences and is appreciated by the author.

UNIVERSITY OF MINNESOTA Driven to Discover™

Manure and Cover Crops

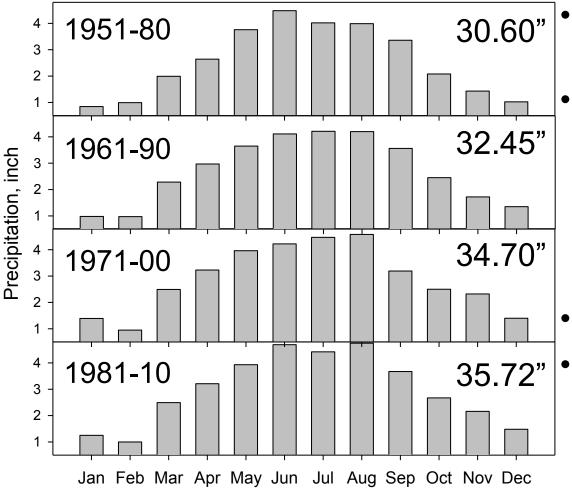
UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Oat cover crop dry matter yield and N uptake in oat forage in 2007 and 2008 at Waseca.

Oat	Manure					
Planting	Application	DM Yield		N Uptake		
Date	Date	2007	2008	2007	2008	
target dates		ton/a	acre	- Ib N/acre -		
8/1	None	1.63	0.68	97	36	
"	8/1	1.98	0.78	129	57	
9/1	None	0.58	0.22	45	16	
"	9/1	0.94	0.23	76	14	

Corn grain yield as influenced by time of hog manure application and oats as a fall cover crop at Waseca.

Cover	Grain Yield						
Crop	2008	2009					
	bu/A						
No	207	211					
Aug. seed	173	140					
No	213	212					
Sept. seed	205	182					
No	223	223					
No	213	(202)					
No	223	219					
No	179	158					
Aug.	146	88					
Sept.	164	104					
No	226	214					
	CropNoAug. seedNoSept. seedNoNoNoNoNoSept.	Crop2008No207Aug. seed173No213Sept. seed205No223No213No223No179Aug.146Sept.164					



Conclusions

- Cover crop establishment, growth, N uptake, and subsequent N release to following crop were unpredictable (highly weather dependent). RISKY
- Risk of a yield penalty for next crop (corn).
- Benefits included: uptake (tie-up) of N from summer manure applications (environmental) and improved soil quality (tilth).

Precipitation patterns are changing and N management may need to change too.

- April and May rainfall hasn't changed, much.
- June still one of the wettest months
 - Past N management like preplant application & inhibitors can be effective (too wet to sidedress)
- Frequency of 2"+ rains
- July and August are significantly wetter
 - Past N management practices less effective.

Thanks Questions? Jeff Vetsch http://sroc.cfans.umn.edu

http://sroc.cfans.umn.edu/People/Staff/JeffreyVetsch/index.htm

UNIVERSITY OF MINNESOTA Driven to Discover™