

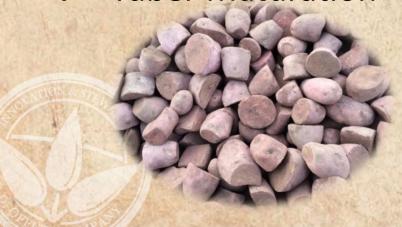
Potato Industry Fertilizer Conservation Efforts

Nick David, Midwest Regional Agronomist R.D. Offutt Company Park Rapids, Minnesota

Nutrient Management Conference February 7, 2017

Topics Covered

- Potato Production
- Potato Growth
- Nutrient Accessibility & Availability
- Nutrient Requirements
- Fertilizer (Nutrient)
 Use Efficiency


Overview of Potato Production - 2015

- Total United States Planted Acres 1,071,600
 - o Idaho 321,000
 - Washington 170,000
 - North Dakota 80,000
 - Wisconsin 66,000
 - o Colorado 59,000
 - o Maine 51,000
 - Minnesota 50,000
 - o Michigan 46,000
 - o Oregon 39,000

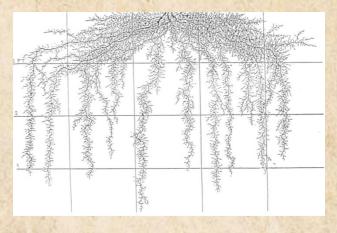
- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

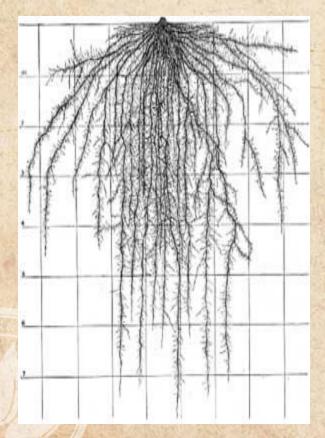
- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

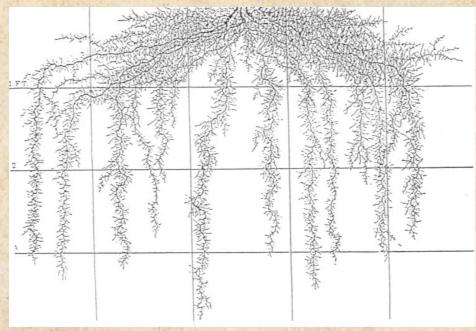


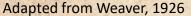
Factors Affecting Nutrient Accessibility


Understand root structure of plant being grown

Mature Corn plant

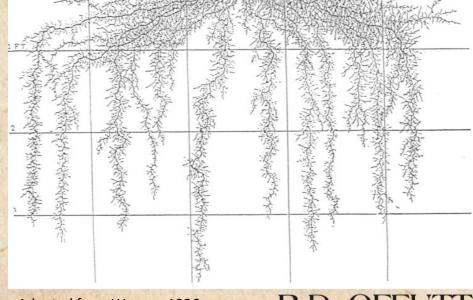
Mature Potato plant

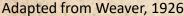

Adapted from Weaver, 1926



Factors Affecting Nutrient Accessibility

- Compaction from previous crops
- Compaction from planting or cultivation events
- Saturated soil conditions

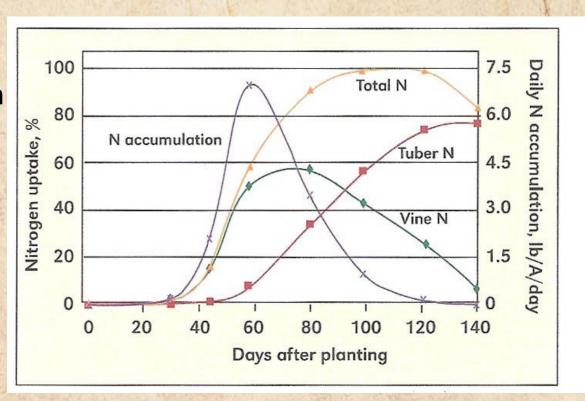




Factors Affecting Nutrient Accessibility

- Soil-borne pathogens
 - Rhizoctonia, Pythium, Phytopthora, Colletotrichum, Verticillium
- Plant pathogenic nematodes
 - Stubby-root and Lesion
- Herbicide damage
- Fertilizer burn
- Mechanical damage

Factors Affecting Nutrient Availability


- Inadequate soil pH
- Microbial immobilization (C:N ratio of debris)
- Volatilization (N)
- Leaching (N,K,S,B)
- Denitrification (N)
- Surface runoff (N & P)

Nutrient Requirements

- I Planting to Crop Emergence
- II Vegetative Growth
- III Tuber Initiation
- IV Tuber Bulking
- V Tuber Maturation

Potato Seasonal N Accumulation & Daily Accumulation Rate. Courtesy of Carl Rosen

Nutrient Requirements

- Potato phosphorus uptake per 100 cwt
 Potato potassium uptake per 100 cwt
 - Vines ~ 0.6 lb P/A
 - Tubers ~ 5.6 lb P/A
 - Total \sim 6.2 lb P/A (14.3 lb P₂O₅/A)
- Vines ~ 6.6 lb K/A
- Tubers ~ 38.4 lb K/A
- Total \sim 45.0 lb K/A (54 lb K₂O/A)

Relative Soil Test	Probability of Response to	Bray P1	NH ₄ OAc K
Level	Applied Fertilizer	ppm	
Low	> 90%	0-10	0-40
Medium	60-90%	11=20	41-80
Medium-high	30-60%	21-30	81-120
High	10-30%	31=40	121-160
Very high	<10%	41+	161+

Average of 2017 Minnesota Potato Fields

56

156

On average, P205 application reduced by 65% since 2011

Nutrient Requirements

- How much Nitrogen is required
 - Tubers are 1.2 1.5%N on dry wt basis
 - Tubers average 20 21% dry matter in Minnesota

FW Yield (cwt/a)	Dry Matter (%)	DW Yield (cwt/a)	Tuber N (lb/a)	Vine N (lb/a)	Total N (lb/a)
600	20	120	180	40-90	220 – 270
500	20	100	150	40-90	190 – 240
400	20	80	120	40-90	160 – 210

Average nitrogen application in Minnesota is 250-270 lb/a.

Average Minnesota Yield is < 500 cwt/a

Room for improvement in Nitrogen Use Efficiency

How do we increase Nitrogen use efficiency?

- Use realistic yield goals
- Manage soil-borne diseases
- Encourage roots to explore maximum soil volume
- Apply the right amount at the right time
- Minimize volatilization and leaching
 - Polymer coated Urea
 - Urease inhibitors
 - Nitrification inhibitors

Reduce leaching with different spatial arrangement?

Reduce row width from 36" to 18" and eliminate row

