Proceedings of the 3rd Annual Nitrogen: Minnesota's' Grand Challenge & Compelling Opportunity Conference

Thank you to all of our Supporters! **Minnesota Department** of Agriculture AGRIGROWTH 1innesotaCorr WEST CENTRAL KOCH AGRONOMIC SERVICES, LLC MNICCA

Do not reproduce or redistribute without the written consent of author(s)

In-Season Split Nitrogen Management and the Role of Soil Testing

Fabián G. Fernández Department of Soil, Water, and Climate <u>fabiangf@umn.edu</u>

Nitrogen: Minnesota's Grand Challenge & Compelling Opportunity Conference. 16 Feb. 2017 Mankato, MN

Field Soil Test Calibration

- Soil test values only indicate the available nutrient in the soil, not the fertilizer required to grow a crop
- Field soil test calibration gives meaning to a soil-test value in terms of nutrient sufficiency and fertilizer need
 - Units of measurement for test results are meaningless without proper field calibration with yield response
- Follow your state recommendations/guidelines

UNIVERSITY OF MINNESOTA

Driven to Discover

How Much Yield Can We Get Through Mineralization in MN? Percent of Corn Yield at EONR Obtained from the 0-N Check 53% C-C, 71% C-S

Nitrogen management is risk management

- So many unpredictable variables can make it a "game of chance"
- Need to manage based on probability

MRTN Rate 108 (120) 133

Driven to Discover

Adding N in D increase Nmin	Yes
Adding N in UD decrease Nmin	No
Soybean less Nmin than corn	Yes
D greater Nmin than UD	No

2015

Adding N in D increase NminYesAdding N in UD decrease NminYesSoybean less Nmin than cornYesD greater Nmin than UDYes for fert. trt only

Potential Mineralizable N

80

70

60

ac⁻¹)

Z

Becker

150

200

400 samples 0-12" deep Every 6" distance ½ acre linear transect

Ammonium-N - Nitrate-N - TIN

Overall, 20 samples per 2.5 acres are needed to achieve a TIN estimate with 10% error margin at 0.05 significance level

Nutrient Management

Can a shallow sample estimate a deeper sample?

0-6" soil samples can be good predictors of 0-12" soils, but the predicting power for 6-12", 12-24", and 0-24" soils is limited

End of Season Soil N

UNIVERSITY OF MINNESOTA

Driven to Discover

Lamberton, Yield

Ves loam soil

Soil N with Pre-plant Applications

Soil with 4% OM, CEC 24 meq/100g

R1, Lamberton

Ves loam soil

Becker, Yield

Hubbard loamy sand

Soil N with Pre-plant Applications

Soil with 1.6% OM, CEC 8 meq/100g

Driven to Discover

DITVEIL LO DISCOVEL

Nitrate

TIN

Δ

V4 NO3-N 0-1', Fine-Textured Soils, 5 site-yrs

V4 NO3-N 0-2', Fine-Textured Soils, 5 site-yrs

V4 TIN 0-2', Fine-Textured Soils, 5 site-yrs

Driven to Discover

Nitrate

TIN

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**

Lamberton, C-C at 120 lb N/a

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**

Driven to Discover^{ss}

Becker, C-C at 120 lb N/a

Hubbard loamy sand

Can We Use Crop Sensors To Improve N Management?

Application Timing

Spatial Variability

Temporal Variability

Grain Yield Prediction – Sensor only

Grain Yield Prediction – Sensor only – V4

GreenSeeker Field of

Adapted from Barmeier and Schmidhalter, (2016)

N Deficiency Determination – Sensor only –QPLoc – V8

N Deficiency Determination – Sensor only – QPLoc – V12

N Deficiency Determination – Sensor only – QPLoc

Soil N sampling timing to improve sensor predictions of N deficiency

Soil Nitrogen Sampling Timings

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover^{se}

Improving Sensor Measurements

Nutrient Management

'ENSI

Driven to Discover^{ss}

()N

Sampling Depth and Nitrogen Measurement

Predicitve Tool	AIC*	R^2
Sensor only	784	0.34
Sensor + 0-24" TIN	729	0.78
Sensor + 0-12" TIN	735	0.74
Sensor + 0-24" NO_3^-	731	0.79
Sensor + 0-12" NO_3^-	741	0.76

* Lower AIC means better fit

V4 Soil NO₃⁻ @ 0-12" is the best approach to improve predictive power

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover³⁴

Utility of Soil Nitrogen to Improve Predictive Power of N Deficiency

UNIVERSITY OF MINNESOTA

Driven to Discover^a

()N

Take Home Messages

- Soil N is variable but it is an important tool
- Canopy sensors can help us manage N:
 - The earlier the sensing the greater the flexibility to apply nitrogen, BUT
 - The earlier the sensing the lesser the predictive power
 - The later the sensing the greater the predictive power, BUT
 - The later the sensing the lesser the flexibility to apply nitrogen and greater potential for yield loss
- Canopy sensor adjustments with soil N show promise
- In-season N application is <u>A</u> tool

Questions

Fabián Fernández fabiangf@umn.edu

THANK YOU

Students, Field Crew, Farmers, Research Centers

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**