Proceedings of the 5th Annual Nitrogen: Minnesota's Grand Challenge & Compelling Opportunity Conference

Do not reproduce of redistribute without the written consent of author(s)

Improving Nitrogen Mineralization Predictions

SDSU

Extension

Jason Clark Jason.D.Clark@sdstate.edu South Dakota State University

Outline

- Introduction and materials and methods
- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

Outline

Introduction and materials and methods

- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

Pictures: Minnesota Department of Agriculture

Decomposition of Organic Materials

Nitrogen Fertilizers

Organic-nitroge

Inorganic-nitrogen NO₃⁻ and NH₄⁺

Inorganic-nitrogen

Grain yield with NO nitrogen applied

49 site-years in 8 U.S. Midwestern states

Soil textures varied across the 49 site-years

Mean annual temperature increases from 35 to 65°F

Precipitation increases from 14 to 52 inches

Weather

Precipitation and temperature

N fertilizer treatments created two N response curves

Soil Sampling

Soil characterization

- Texture
- Bulk density
- Organic matter
- Carbon
- Total nitrogen
- pH
- CEC

Soil nitrate

- Pre-plant (PPNT), 0-36 in.
- V5 (PSNT), 0-24 in.

Plant Sampling

Plant Sampling

Grain Yield

Anaerobic Potentially Mineralizable Nitrogen Test (PMNan)

What's the best PMNan protocol to predict EONR?

- Soil sampling timing: Pre-plant and V5 (5 horizontal leaves)
- Nitrogen Rate: 0 and 160 lbs. ac⁻¹ (V5 sampling time)
- Incubation length: 7, 14, 28 days

Outline

- Introduction and materials and methods
- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

PMNan Increases with Incubation Length

□ 7-Day □ 14-Day □ 28-Day

Soil Texture

Sampling timing can influence PMNan (0-N Check)

PMNan from V5 > PP under higher temperatures

Soil and weather conditions influence effect of sampling timing on PMNan

Critical Values

Variable	Pre-plant vs. V5 sampling timing
Larger Values: Pre-plant > V5 <u>and</u> Smaller Values: V5 > Pre-plant	
C:N	9.7:1
Larger Values: V5 > Pre-plant <u>and</u> Smaller Values: Pre-plant > V5	
Sum of precipitation	0.4 in.
SDI Evenness of	0.63
AWDR rainfall	115
Growing degree-days	359
V5 soil NO ₃ -N (0-12 in; 0-N)	8.2 ppm

Nitrogen addition can influence PMNan at V5

🗖 0-N 📕 160-N

PMNan from 160N > 0N under greater organic matter

Soil conditions influence effect of N addition on PMNan

Critical Values

Variable	Pre-plant vs. V5 sampling timing
Larger Values: 0-N > 160-N <u>and</u> Smaller Values: 160-N > 0-N	
Clay	10 %
V5 soil NO ₃ -N (0-12 in; 0-N)	2.03 ppm
Larger Values: 160-N > 0-N <u>and</u> Smaller Values: 0-N > 160-N	
Total organic carbon	2.1 %
Organic matter	3.8 %
C:N	11.02

Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?

- PMNan increases with incubation length
- Soil sampling timing of 0-N areas can influence PMNan
- N fertilizer has no impact or decreases PMNan at V5 sampling

Outline

- Introduction and materials and methods
- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

Pre-plant N mineralization does not predict EONR well

V5 N mineralization <u>WITHOUT N</u> does not predict EONR well

V5 N mineralization <u>WITH N</u> does not predict EONR well

Delayed sampling and increased incubation length do not improve predictability of EONR

PMNan in Minnesota vs. EONR

Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?

No increase in the predictability of EONR by:

- Increasing incubation length
- Delaying soil sampling
- N fertilizer addition

Outline

- Introduction and materials and methods
- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

Predicting grain yield at 0-N, grain yield at EONR, and EONR with:

- Soil nitrate (PPNT and PSNT)
- Soil nitrate + mineralizable nitrogen (PMNan)
- Soil nitrate + PMNan + initial NH₄+

PPNT is not well related to grain yield at 0-N.

PSNT improves relationship with grain yield at 0-N. PPNT: R² = 0.18

Including soil NO₃⁻, PMNan, and NH₄⁺ improves predictability of grain yield at 0-N.

Soil textures varied across the 49 site-years

Mean annual temperature increases from 35 to 65°F

Predictability of <u>grain yield at 0-N</u> improved by texture or temperature categories with PMNan used varying

Adding N lowers the ability to predict grain yield.

Soil N Sampling Timing

Predictability of <u>grain yield at EONR</u> improved by texture or temperature categories with PMNan used varying

Grain Yield at EONR

Adding N lowers predictability of <u>EONR</u>

Predictability of <u>EONR</u> improved by texture or temperature categories with PMNan used varying

Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?

Grain yield and EONR predictability increased by:

- Delaying soil-N sampling from PPNT to PSNT
- Separating by soil texture and temperature
 - \bullet Including PMNan and initial $\rm NH_4^+$
 - PMNan used varies by texture or temperature categories

Outline

- Introduction and materials and methods
- Q-1) Does incubation length, soil sampling timing, and N fertilization influence PMNan?
- Q-2) Will changes in PMNan due to sampling timing, N rate, and incubation length improve predictability of EONR?
- Q-3) Can using PMNan values in conjunction with other soil-N tests improve corn response predictions?
- Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

Predicting relative grain yield with:

- PPNT
- PSNT
 - Inclusion of mineralizable nitrogen (PMNan)

PPNT alone did not predict relative yield well

PPNT + PMNan did not predict relative yield well

PSNT predicted relative yield well

PSNT + PMNan increased over-application rate

Q-4) Can including PMNan with soil-N tests improve N sufficiency indexes?

> Including PMNan lowered predictability of relative yield and increased overapplication rates of N

Conclusions

- PMNan is influenced by incubation length, soil sampling timing, and N fertilizer addition
- Predictability of grain yield and EONR was low but it was improved by:
 - Delaying soil-N sampling from PPNT to PSNT
 - Including PMNan and initial NH₄⁺ with PPNT or PSNT
 - Separating by texture or temperature
- Inclusion of PMNan with soil-N tests did not improve N sufficiency indexes

Future research

Further improve grain yield and EONR predictability by:

 Including other soil and weather conditions with PMNan and soil-N tests

Acknowledgements

North Dakota St. University

Fabián Fernández

John Sawyer

Carrie Laboski University of Wisconsin

Richard Ferguson **N** University of Nebraska

Emerson Nafziger University of Illinois

James Camberato Purdue University

Thank You!

sdsu Extension

Jason Clark Jason.D.Clark@sdstate.edu South Dakota State University