Proceedings of the 5th Annual Nitrogen: Minnesota's Grand Challenge & Compelling Opportunity Conference

Do not reproduce of redistribute without the written consent of author(s)

Nitrogen Management with Manure

MELISSA WILSON, Ph.D.

Assistant Professor and Extension Soil Scientist Department of Soil, Water, and Climate University of Minnesota

Photo credit: MPCA

AGENDA

- What impacts nitrogen availability?
 - -Housing/Storage
 - -Species
 - -Application equipment
 - -Timing/Seasonal application

University of Minnesota Extension

NITROGEN LOSSES FROM MANURE

Figure 1. Percent NH₃ emissions from total manure-NH₃ in each component of livestock operation (EPA National Emissions Estimates, 2005)

MANURE STORAGE AND HANDLING

- How is the manure collected and stored?
 - –Liquids: Deep pits? Flushed system? Anaerobic lagoons or storage ponds?
 - Solids: Indoors or outdoors? Is it mixed often? How is it stacked?

by storage/handling method			
Storage, handling method	Manure type	% N loss	
Daily scrape, haul	Solid (tons)	25	
Manure pack	Solid (tons)	30	
Open lot	Solid (tons)	50	
Litter	Solid (tons)	35	
Above ground tank	Liquid (gals)	20	
Below ground covered pit	Liquid (gals)	20	
Below ground open pit	Liquid (gals)	25	
Under-floor dry	Solid (tons)	25	
Under-floor liquid	Liquid (gals)	20	
Earthen storage	Liquid (gals)	30	
Lagoon	Liquid (gals)	75	

Table A2. Nitrogen losses

NITROGEN LOSSES FROM MANURE

Figure 1. Percent NH₃ emissions from total manure-NH₃ in each component of livestock operation (EPA National Emissions Estimates, 2005)

NUTRIENT CONTENT VARIES BY ANIMAL TYPE

 \bigcirc

NUTRIENT CONTENT VARIES BY ANIMAL TYPE

 \bigcirc

UNIVERSITY OF MINNESOTA EXTENSION

MANURE N DISTRIBUTION

University of Minnesota Extension

IMPACTS ON NUTRIENT AVAILABILITY

- Animal species
- Application method

	Percent of total nitrogen available per year				/ear
Year	Broadcast +	+ Timing of Incorporation		Injection	
Available	> 96 hours	12-96 hours	< 12 hours	Sweep	Knife
Beef					
1	25	45	60	60	50
2	25	25	25	25	25
Lost	40	20	5	5	10
Dairy					
1	20	40	55	55	50
2	25	25	25	25	25
Lost	40	20	10	5	10
Swine					
1	35	55	75	80	70
2	15	15	15	15	15
Lost	50	30	10	5	15
Poultry					
1	45	55	70	n/a	n/a
2	25	25	25	n/a	n/a
Lost	30	20	5	n/a	n/a

Three basic methods for application:

1.Surface (no incorporation)2.Incorporation or injection3.Irrigation

Depends on type and form *Most influential factor for controlling N losses*

- 1: Surface application
 - Substantial NH₃
 volatilization (most in first 24 hours)
 - P and K losses through runoff and erosion
 - -Odors can be an issue

Image: http://njaes.rutgers.edu/animal-waste-management/spreading-manure.asp

- 2: Incorporation and injection
 - Substantially reduces total N loss
 - 5-10% lost if incorporated within 12 hours
 - 20-30% if within 4 days
 - 30-50% if left on surface
 - –Also reduces odors and P & K loss

Tool bar with hydraulic injectors - undersurface spreading -

INJECTION

Uniform application

- Pockets of high ammonium & salts can reduce seed germination, injure seedlings
- Spacing is important, can see striping
- Sweep vs. knife injection
 - Disperses liquid, reduces denitrification loss
 - Shallower, so slows down leaching in sandy soils

WHAT ABOUT THESE?

Double disk applicators

Aerway (soil aerators)

DOUBLE DISK APPLICATORS

- Essentially, it bands manure and immediately incorporates it
 - Shallow incorporation

	% of total N available per year		
Year	Broadcast + Timing of Incorporation		
Available	> 96 hours	12-96 hours	< 12 hours
Beef			
1	25	45	60
2	25	25	25
Lost	40	20	5
Dairy			
1	20	40	55
2	25	25	25
Lost	40	20	10
Swine			
1	35	55	75
2	15	15	15
Lost	50	30	10
Poultry			
1	45	55	70
2	25	25	25
Lost	30	20	5

AERWAY (SOIL AERATORS)

 Study found dairy manure applied at 20,000 gal per acre to cropland:

 \mathcal{D}

AERWAY (SOIL AERATORS)

	% of total N available per year		
Year	Broadcast + Timing of Incorporation		
Available	> 96 hours	12-96 hours	< 12 hours
Beef			
1	25	45	60
2	25	25	25
Lost	40	20	5
Dairy			
1	20	40	55
2	25	25	25
Lost	40	20	10
Swine			
1	35	55	75
2	15	15	15
Lost	50	30	10
Poultry			
1	45	55	70
2	25	25	25
Lost	30	20	5

University of Minnesota Extension

- 3: Irrigation
 - Lagoon effluent alkaline NH₃ concentration high
 - Large volatilization
 - losses
 - Need to monitor salt
 levels in effluent to avoid burning plants

Application	Manure	NH ₄ -N loss*
method	type	(% of total)
Surface	Solid	15-30
Surface	Liquid	10-25
Incorporate [†]	Solid	1-5
Incorporate [†]	Liquid	1-5
Injection	Liquid	0-3
Irrigation	Liquid	30-40

*N loss 3 days after application; [†]Incorporated within a few hours. Source: Animal Manure as a Plant Nutrient Resource, Purdue CES, 2001.

WHAT ELSE IMPACTS NUTRIENT AVAILABILITY?

Application timing

 $\ensuremath{\textcircled{\sc 0}}$ 2019 Regents of the University of Minnesota. All rights reserved.

APPLICATION TIMING: SPRING

Advantage

- Short window between application and uptake
 - Best time on sandy soils

Disadvantages

- Logistics
- Greater risk of salt and NH₃ toxicity for germinating seeds and young seedlings
- Less time for mineralization for manures with high C:N ratio
 - Immobilization => early season N deficiency

FIELD EXPERIMENTS

- 2 locations with two sites each
- 6 types of manure
 - Applied all at N-based rate of 140 pounds of plant available N per acre
- Fertilizers (to develop response curve)
- Total treatments: 16

MANURE NUTRIENT AVAILABILITY

MANURE NUTRIENT AVAILABILITY

University of Minnesota Extension

MANURE NUTRIENT AVAILABILITY

Picture taken June 18, 2018 at SROC

June 28, 2018 at SWROC

July 26, 2018 at SWROC

© 2019 Regents of the University of Minnesota. All rights reserved.

University of Minnesota Extension

SPRING APPLIED MANURE IN 2018 AT WASECA

 \bigcirc

APPLICATION TIMING: SUMMER

Advantages

- Sidedressing: Apply nutrients to a growing crop
- Post-harvest: Easy to apply following early-harvested

crops

Disadvantages

- Can damage standing crops, especially in end rows
- High potential for salt damage when topdressing perennial crops
- NH₃ volatilization losses from surface applications are high
 - Warm, dry conditions

SUMMER APPLICATIONS - SIDEDRESSING

On-farm experiment to test N sources

Corn-corn-soybean

- 40 lbs N in starter
- Sidedressed 140 lbs N at V4/V5 stage
- Compared:
 - Swine manure with dragline (3,500 gal per acre)
 - Anhydrous ammonia

34

- Liquid UAN (32%)
- No N sidedressed

SIDEDRESSING MANURE INTO CORN

Partially funded by MN Pork Board and MN Soybean Research and Promotion Council

35

SIDEDRESSING MANURE INTO CORN

36

SIDEDRESSING MANURE

37

 $\ensuremath{\mathbb{C}}$ 2019 Regents of the University of Minnesota. All rights reserved.

 \mathcal{O}

SIDEDRESSING MANURE

Partially funded by MN Pork Board and MN Soybean Research and Promotion Council

APPLICATION TIMING: FALL

Advantages

- Logistics
- Soil generally less subject to compaction
- More time for organic matter mineralization

Disadvantages

- More time for nutrient losses:
 - Do not fall apply on sandy soils
 - Other soils, apply when soil temperatures <50°F (to reduce nitrification)
- Surface fall application subject to same snowmelt losses as winter application

APPLICATION TIMING: WINTER

Advantages

Avoid compaction if on frozen ground?

Disadvantages

- Cannot incorporate
- High nutrient loss potential
 - Snowmelt runoff, frozen ground
- Potential to burn perennial crops
- If winter application necessary:
 - Apply only on level ground
 - Fields with more residue are best
 - Most inorganic N will still be lost

WINTER MANURE APPLICATIONS

41

First runoff event

Collected samples: Jan. 28, 2018

14% Solids

3% Solids

No Manure

Third runoff event

Collected samples mid-event after a rainfall: Mar. 4, 2018

University of Minnesota Extension

WINTER RUNOFF NUTRIENT LOSSES

Nutrient loss timing through the end of March

Sampling dates

WINTER RUNOFF NUTRIENT LOSSES

Cumulative nutrient losses through the end of March

Ammonium + Nitrate N

TAKE HOME MESSAGES

- Large proportion of nitrogen is lost during housing and storage
- Distribution of manure nitrogen between organic and inorganic pools impacts availability
 - Liquid manures tend to be closer to 50% inorganic N, except swine which is 60% inorganic N
 - Solid manures tend to have only 10-20% inorganic N

TAKE HOME MESSAGES

- Application equipment also impacts N availability
 - The faster manure is mixed with soil, the more N is conserved
- Timing of manure application during the year determines N availability, too
 - More research is being conducted to open up the window of opportunity for application

Thank you! Questions?

Contact Info:

- Email: mlw@umn.edu
- Follow me on
 twitter:
 @ManureProf

Research Sponsors:

- Ag. Fertilizer Research and Education Council (AFREC)
- MN Pork Board
- MN Soybean Research and Education Council

© 2019 Regents of the University of Minnesota. All rights reserved.

The University of Minnesota is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this PowerPoint is available in alternative formats upon request. Direct requests to 612-624-1222.