Proceedings from the 6th Annual Nutrient Management Conference

Do not reproduce or redistribute without written consent of the author(s)

Evaluating nitrogen stabilizers, my experience

R. Jay Goos

North Dakota State University

- Nitrogen stabilizers 101
- Nitrogen stabilizers are fertilizer additives that slow
 - Urea hydrolysis
 - Nitrification

- Urea hydrolysis
- Urea manufacture

Urea hydrolysis in soil

Urea +
$$H_2O$$
 -----> $2NH_3 + CO_2$

Reaction catalyzed by an enzyme...urease

- Urease enzyme
 - Widely distributed in nature
 - Soil, microbes, and especially crop residues
- Kinetics of urea hydrolysis
 - Think...days
- When is urea hydrolysis of concern?
 - When urea-containing fertilizers are left on the soil surface
 - Part of the N can escape to the atmosphere
 - Ammonia volatilization

- What does a urease inhibitor do?
 - Slows urea hydrolysis by soil/crop residues
 - Gives the soil a better opportunity to absorb the
 NH₃ generated as NH₄⁺
 - Increases the opportunity for rainfall to incorporate the fertilizer

 So, the possible benefits of using a urease inhibitor are observed in a short time (< 2 weeks)

- Nitrification
- Most of the N applied by farmers is reduced in nature (anhydrous ammonia, urea, proteins in manure or compost)
- Reduced forms of nitrogen eventually get oxidized by microbes in an aerated soil
 - End result....nitrate (NO₃⁻)
 - This is the process of nitrification

- For example, a farmer spreads urea in the spring, and tills it in....what happens?
- Urea hydrolysis turns urea into NH₃ and CO₂
- The soil simultaneously turns NH₃ into NH₄⁺
- The kinetics of this....days

- Then, microbes convert the NH₄⁺ into NO₃⁻
- The kinetics of this....about a month

- Plants love nitrate.....what's the problem?
 - Nitrate can leach into groundwater or into tile drains
 - Nitrate can be lost as N₂ and N₂O if the soil becomes waterlogged (denitrification)
- What does a nitrification inhibitor do?
 - Slows the conversion of NH₄⁺ to NO₃⁻, hopefully reducing loss from leaching or denitrification

- One problem with explaining urease and nitrification inhibitors to farmers
- Control vs. Inhibition
- Farmers understand control
 - Example: a soil-applied herbicide controls target weeds for 6 weeks, before weeds begin to reappear
 - The farmer got....6 weeks of control
 - Farmers want to know how long with this or that stabilizer will control urease or nitrification
 - It doesn't work like that

- Control implies: stopping something
- Inhibition implies: slowing something down
- Nitrogen stabilizers provide inhibition, not control

Half-life without, ~2.4 days; with, ~ 7 days... ~65% inhibition

- The industry-standard urease inhibitor, NBPT
 - "Rusty key" analogy
- Originally available as Agrotain, but other brands available today
- READ THE LABEL, HOWEVER....some brands don't give the % NBPT

CONTAINS: Active ingredient (26.7%): N-(n-butyl)-thiophosphoric triamide (NBPT) (CAS RN 94317-64-3)

Inactive ingredients (73.3%): N-methyl-2-pyrrolidone (CAS RN 872-50-4), 1,2-propanediol (CAS RN 57-55-6), dyes

CONTIENT: Ingr thiophosphoriq Ingrédients ina 1,2-propanedio

Another product...

ACTIVE INGREDIENT:

NBPT (N-(n-butyl)-thiophosphoric triamide)..... OTHER INGREDIENTS:

73.3%

IF ON SKIN OR CLOTH

- · Take off contaminated
- Rinse skin immediatel

ACTIVE INGREDIENTS:

NBPT, co-polymers, alcohols, and emulsifiers Total

- So, with regard to NBPT-containing products
- NBPT is the industry-standard soil urease inhibitor
- But...make sure the actual % NBPT is on the label

And...watch out for ineffective products

- Urease inhibitors and granular urea
- 10 mg urea granule, labeled rate of Agrotain Ultra (NBPT)
- Concentration of NBPT in the fertilizer reaction zone, single digits of ppm

- So, a standard rate for testing urease inhibitors for application to urea granules, soil concentration of 5 ppm in soil
- Usually a short-term incubation when screening potential urease inhibitors

(% Inhibition)

 Evaluation of urease inhibitors, intact granules, urea hydolysis

 Evaluation of urease inhibitors, intact granules, ammonia volatilization

- Some general thoughts on urease inhibitors and granular urea
- Surface application of urea on no-till, use an effective urease inhibitor
- You don't need a urease inhibitor if:
 - Urea is tilled in within a couple days
 - Significant rain is expected
- New products...
 - Limus and Anvol, effective

- Liquid fertilizers (UAN)
- Positives:
 - Only half of the N is urea, and subject to volatilization
 - Can be streamed/dribbled, shallowly injected
 - If sulfur is needed, ATS can slow volatilization
- What is definitely out:
 - Spraying on heavy crop residues

Goos, 2013b

- With UAN...
 - Surface banding/dribbling/streaming reduces contact with stubble
 - NBPT is effective
 - If S is needed, ATS can slow volatilization, but not as well as NBPT

- Nitrification inhibitors...
- Slow the conversion of ammonium to nitrate
- Most studies don't show much of a yield benefit, and here is why...

- When does the use of a nitrification inhibitor benefit the farmer?
- We have to talk about dominoes

"Dominoeffect". Licensed under CC BY-SA 3.0 via Wikimedia Commons

- When does the use of a nitrification inhibitor lead to a crop yield increase????
- All the "dominoes" need to line up:
 - The N rate cannot be excessive

- When does the use of a nitrification inhibitor lead to a crop yield increase????
- All the "dominoes" need to line up:
 - The N rate cannot be excessive
 - Nitrogen loss by leaching or denitrification has to occur

- When does the use of a nitrification inhibitor lead to a crop yield increase????
- All the "dominoes" need to line up:
 - The N rate cannot be excessive
 - Nitrogen loss by leaching or denitrification has to occur
 - This nitrogen loss has to occur during a "sweet spot" of time

- When does the use of a nitrification inhibitor lead to a crop yield increase????
- All the "dominoes" need to line up:
 - The N rate cannot be excessive
 - Nitrogen loss by leaching or denitrification has to occur
 - This nitrogen loss has to occur during a "sweet spot" of time
 - The amount of N saved by the use of an inhibitor has to be large enough to lead to a measurable difference in yield

The "sweet spot" of time

- Consider three loss scenarios
 - Scenario 1....N loss event happens shortly after N application
 - Scenario 2....N loss event happens during the period of time that the inhibitor is effective
 - Scenario 3....N loss event happens after the N is nitrified, with or without inhibitor

The "sweet spot" of time....

- Scenario 1....loss event happened shortly after application
 - No effect of a nitrification inhibitor expected
- Scenario 3....loss event happened after most of the N had nitrified, even with an inhibitor
 - No effect of a nitrification inhibitor expected
- Scenario 2...the "sweet spot" of time

The "sweet spot" of time....

- An example of all of the dominoes lining up....
- A fertilizer experiment set out in the fall of 1996

- Ammonia was applied in early October, on 12 inch centers. N rate was 75 lb N/A
- Additives were:
 - N-Serve at the recommended rate (0.5 lb/A)
 - N-Serve at 3 X the recommended rate
 - ATS at 15 lb S/A
- Soils were somewhat poorly drained

The fall was normal, a bit on the dry side...

- Band samples taken about 3 weeks later, 23-24 October
- Nitrification was proceeding slowly, and would essentially cease in another week or so

 Both N-Serve and ATS were slowing nitrification, and the soil froze for the winter with a difference in the soil ammonium content between the minus and plus inhibitor treatments....the "sweet spot"

Treatment	Site 1	Site 2	Average
Control	0	3	2
Aqua	54	32	43
Aqua + NP	80	63	72
Aqua + 3X NP	88	68	78
Aqua + ATS	76	54	65

- The fall was normal, but the winter was NOT
- The winter of 1996-1997....nothing like it before, or (thankfully) since.
 - Average snowfall in Fargo is about 3 feet
 - Previous record snowfall in Fargo, about 6 feet
 - Snowfall 1996-1997, officially, ~9 feet.
 - That fall application of N went through a "worst case scenario" for overwinter losses

 Band samples taken in the spring, how much mineral N (ammonium + nitrite + nitrate-N) made it through such an awful winter??????

	Site 1	Site 2	Average
Control	3	4	4
Aqua	7	9	8
Aqua + NP	22	31	27
Aqua + 3X NP	37	41	39
Aqua + ATS	29	36	33

Site 2 was planted to wheat.

Yield and NUE data, one site...

Treatment		Total N uptake	Nitrogen fert.	
	Grain yield	in grain + straw	use efficiency	
	bu/A	lb/A	%	
Control	23.4	34.6		
Aqua	37.0	52.9	24	
Aqua + NP	45.0	72.2	50	
Aqua + 3X NP	45.9	72.5	50	
Aqua + ATS	47.3	77.0	56	

- All of the dominoes lined up...
 - The N rate was not excessive
 - Nitrogen loss occurred
 - The loss event occurred during the "sweet spot" of time, when there was a difference in the ammonium level in the soil
 - Soil was frozen during the "sweet spot" of time
 - The loss was big enough to reduce yield
 - There was a big payoff from using an inhibitor

- So, where do nitrification inhibitors fit?
- A tough call, as there are alternatives
 - Avoiding fall application, instead of using ammonia + N-Serve
 - Split application
- But, there can be small benefits of a nitrification inhibitor, apart from N loss prevention
 - Keeping N shallower in the soil

Fertilizer	NH4-N in soil, ppm	N uptake, lb/A
Control	1	45
Calcium nitrate	2	100
10 mg urea gran.	9	105
10 mg urea-DCD	21	112*
100 mg urea gran.	20	112*
100 mg urea-DCD	68	114*

NH4-N in top six inches, 4 weeks after fertilization *Significantly greater than calcium nitrate 3 sites, 1993
Goos, et al. 1999

- Some consideration with regards to products
- N-Serve, nitrapyrin, is still the "gold standard"
- Encapsulating nitrapyrin to make Instinct, does reduce its effectiveness somewhat
- DCD, rates needed much greater

Inhibitor	Concentration of a.i.	% Inhibition
N-Serve	1 ppm	72
Instinct	5 ppm	79
DCD	25 ppm	73

Four soil average, 4 week incubation Goos, 2019

- DCD shennanigans.....watch out....
 - DCD needs to be added to molten urea during manufacture. SuperU is almost 1% DCD by weight
 - Surface-applied DCD products, the rate is just too low

As with urease inhibitors, there are ineffective products out there

Fertilizer source	% of N as ammonium after 4 weeks
Urea	7
Urea + NSN-1	7
Urea + NSN-2	8
Urea + NZone	7
Urea + Instinct	30
SuperU	41

Intact pellets incubated with soil for 4 weeks, 3 soil average

Adapted from Goos and Guertal, 2019

To summarize

- Urease inhibitors are probably the easier decision
 - Strict no-till, broadcast urea granules
 - Use an effective product, and rate
- Nitrification inhibitors, a more difficult decision
 - Particularly if split-application is practical for the farmer
 - Use an effective product, and rate

Papers quoted:

- Goos and Johnson, 1992. Comm. Soil Sci. PlantAnal. 23:1105-1117
- Goos, et al. 1999. Agron. J. 91:287-293
- Goos and Johnson, 1999. Agron. J. 91:1046-1049
- Goos, 2013a. Soil Sci. Soc. Am. J. 77:1418-1423
- Goos, 2013b. Comm. Soil Sci. Plant Anal. 44:1909-1917
- Goos, 2019, Comm. Soil Sci. Plant. Anal. 50:503-511
- Goos and Guertal, 2019, Agron. J. 111:1441-1447