Proceedings from the 6th Annual Nutrient Management Conference

Thank you to all

of our Supporters!

6th Annual NITROGEN: MINNESOTA'S GRAND CHALLENGE & COMPELLING OPPORTUNITY CONFERENCE

6TH ANNUAL NITROGEN: MINNESOTA'S GRAND CHALLENGE & COMPELLING OPPORTUNITY CONFERENCE

Do not reproduce or redistribute without written consent of the author(s)

Importance of Urban and Non-urban Nutrient Reductions

Katrina Kessler, P.E. | Assistant Commissioner

February 18, 2020

Outline – Nutrients in waters

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources urban & ag important

- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Why important? Local lake & stream impairments

Effects:

- less oxygen for fish
- toxic blue-green algae
- recreation/economic declines

693 lakes impaired

814 river miles impaired

Why important? Downstream water algae blooms

Lake Pepin

Needs 35% P reduction

35% from a 2008-17 baseline

Lake Winnipeg

Needs 50% N & P reduction in Red River

Gulf of Mexico

Needs 45% reduction of both N and P to reduce hypoxic zone to 1/3 current size

50% from a late 1990's baseline

Why important? Aquatic life nitrate toxicity

- •
- :

SECOND DNID CHORDATA FISH 600 FAMILY PLANKTONIC **BENTHIC** CRUSTACEAN CRUSTACEAN OTHER ROTIFERA, **INSECT OR** ANNELIDA MOLLUSCA MOLLUSC

Nitrate as a biological stressor

Marke

MN stream monitoring shows nitrate as one factor that negatively affects the biological health of our waters

 286 of 756 (38%) biologically impaired reaches have nitrate as one stressor

Why important? Drinking water – local wells

Private Wells

110+ townships have over 10% of wells exceeding nitrate standard

Private Well NitrateTesting-MDA Township Testing Program

Community water systems

13 with nitrate over 10 mg/l**26** with nitrate 5-10 mg/l

Why important? Drinking water – surface waters

Examples

City of Fairmont, Minnesota

MN headwaters to Iowa Rivers Des Moines and Cedar Rivers

Why important? Economic costs

Examples of economic hits

- lost nutrients to water = lost fertilizer value
- Recreation and tourism in MN & Canada
- Well water treatment for nitrate
- Shell-fish industry in the Gulf of Mexico

Nutrient River conditions and trends

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources ag & urban important

- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

River phosphorus concentration 10-year trends

Highest phosphorus in west & south

Mississippi River phosphorus concentration decreased from 1999-2018 but flow increase makes P load trends non-significant

4-7 inches more rain per year in Southern MN

River nitrate concentration 10-year trends

Highest nitrate in southern MN

Nutrient Sources

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources urban & ag important

- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Statewide sources to rivers differ for N & P

Source: MPCA & UMN 2013

Source: MPCA et al., 2014

Nitrogen to Rivers

From MPCA et al

2013

Important to reduce Urban sources of N & P

Source: MPCA et al., 2014

Important to reduce Cropland N & P losses

Source: MPCA & UMN 2013

Source: MPCA et al., 2014

Progress and needs

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources urban & ag important

- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Agricultural progress

Wastewater nutrient discharges – 2000 to 2018

Ρ

Mississippi River Basin Lake Superior Lake Winnipeg

N

Mississippi River Basin = Lake Superior = Lake Winnipeg

Other urban progress

- Lawn fertilizer phosphorus restricted since 2004
 - Turf N & P fertilizer about 2% of all fertilizer
- Urban stormwater runoff program regulates:
 - 2000-2500 construction projects per year
 - 250+ municipalities
 - >3900 industrial permits

MN Nutrient Reduction Strategy

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources ag & urban important
- 4. We've made progress, but there's more we need to do

5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Afternoon breakout session

Minnesota's Nutrient Reduction Strategy

Finalized in 2014 by 11 orgs.

Public review in 2013

https://www.pca.state.mn.us/water/nutrient-reduction-strategy

Most watersheds have completed strategies or in-progress

How many new BMP acres needed to achieve 2025 milestones? (statewide scenario for both N & P)

Concluding remarks

- We've made a lot of progress over the decades (especially with phosphorus) but we still have a long ways to go.
- We are working hard to avoid leaving a pollution legacy that our children and grandchildren will have to address.
- Nutrients are statewide problem and it requires <u>all</u> citizens and business sectors to be involved with solutions.
 - Ag/urban partnerships are increasing let's continue working together

Questions?

Dana Vanderbosch

2/25/2020

• Note: We could add the next few slides about Minnesota's nutrient reduction strategy, but for the sake of time, we probably should just leave them out of this talk and defer to Glenn's talk.

Wastewater nitrogen – typically 10-25 mg/l

Continuous discharge Controlled discharge

Source of tile-drainage nitrate range (MDA monitoring of Discovery Farms & other sites)

Mississippi River Nitrogen Goals

New BMP acreages for milestones & final goals

Huge scale of new acreages needed

Milestones 10-20%

Final goals 45-50%

Major basin	2014 to 2025 (Milestones)	"final" goals
1. Mississippi River	12% for P (of pre-2000 baseline loads)	45% & meet MN lake & river
	20% for N	standards
2. Red River &	10% for P	50%
Lake Winnipeg	13% for N	
3. Lake Superior	No net increase from 1970's	
Statewide Groundwater/ Source Water	Meet 1989 Groundwater Protection Act Goals	

2/25/2020

2/25/2020

Minnesota's nutrient reduction strategy to address both urban and agricultural sources

- Brief overview of the strategies for both urban and agricultural sources
- Brief mention of watershed WRAPS and 1W1P efforts to reduce urban and ag sources

• Question and A

Phosphorus	Percent reduction goal	Baseline (MT)	Target (MT)	Current level (MT)	Progress towards goal
Gulf of Mexico	45%	1,739	783	493	100% met
Lake Winnipeg	10%	58	52	2 44	100% met
Lake Superior	No net increase			38	-

Nitrogen	Percent reduction goal	Baseline (MT)	Target (MT)	Current level (MT)	Progress towards goal
Gulf of Mexico	20%	9,600	7,680	12,460	38% needed
Lake Winnipeg	13%	300	261	935	72% needed
Lake Superior	No net increase			1,122	-

• Extra slides

FWMC

flow-weighted mean concentration

T. Phosphorus

FWMC

flow-weighted mean concentration

T. Phosphorus

Percent of watersheds in cropland

High nitrate water in highly tiled watersheds

20-year phosphorus trends - showing improvements

Phosphorus concentrations (flow-corrected)

<u>28 sites</u>

- **21 decreasing 15-55%**
- 6 no significant trend
- 1 increase

DRAFT

20-year nitrate trends do not show many improvements

Nitrate concentrations (flow-corrected)

28 sites

- 3 decreasing
- **11** no significant trend
- 14 increasing

DRAFT

Lake Clarity Trends

Source: MPCA 2019

Phosphorus in Rivers (20 years - corrected for flow variability)

Nitrate in rivers (20 year - adjusted for flow variability)

Source: Metropolitan Council

2/25/2020

Lake Assessments (Aquatic Recreation Use - AQR) Eutrophication - Phosphorus, Chlorophyll, and Secchi Transparency

57

Annual Total Nitrogen Loads to the Culf

Coastal Goal

Interim Target

By 2035, reduce 5-year running average size of the Gulf hypoxic zone to 5,000 km² 20% reduction of N & P loading from the MARB by 2025

Year Historic size of hypoxia from 1985 to 2019. No data for 1989 and 2016. 1988 value is 15 sq. mi. (N. Rabalais, LSU/LUMCON & R. Turner, LSU)

River nutrient concentrations vary greatly across MN

Phosphorus

2025

2,500 tons

111

1997

4,600 tons

2014

Note: 48% agric. P reduction to Minnesota River Basin during decades prior to 2006 Based on National Conservation Effects Assessment Project (USDA 2010).