Proceedings from the 12th Annual Nutrient Management Conference

Do not reproduce or redistribute without written consent of the author(s)

Importance of Urban and Non-Urban Nutrient Loss Reductions

Dana Vanderbosch | Director, Municipal Division

February 4, 2020

Outline – Nutrients in waters

- 1. Why is it important to reduce nutrient losses?
- 2. Conditions and trends
- 3. Urban and ag sources
- 4. We've made progress, but there's more we need to do
- 5. Minnesota's Nutrient Reduction Strategy

Why important? Drinking water – local wells

Private Wells

110+ townships have over 10% of wells exceeding nitrate standard

Private Well NitrateTesting-MDA Township Testing Program

Community water systems

13 with nitrate over 10 mg/l; 26 with nitrate 5-10 mg/l

This map shows those community water systems where source water samples for nitrate were above 3 mg/L. The samples were collected and analyzed during 2017-2018. Each sample was collected from a source or entry point and represents source water mitrate levels. These results do not represent finished water quality. A total of 967 community public water systems exist in Minnesota. Community water systems provide water to people in their homes.

Maximum Nitrate–Nitrogen Concentrations in Public and Domestic Wells (1990–2015)

The map shows three categories of contamination in mg/L: showing human influence (3–5), of concern to state agencies (5–10), and above the federal safe drinking water standard (>10). Data source: Minnesota County Wells Index.

Costs for safe drinking water

Systems in smaller communities have fewer customers to spread the costs around

Inequities in what families have to pay to treat for nitrate

ADRIAN (pop. 1,209): \$3,300 cost for treatment per household to seal wells and build a treatment plant

Why important? Drinking water – surface waters

Why important? Local lake & stream impairments

Effects:

- Less oxygen for fish
- Toxic blue-green algae
- Recreation/economic declines

693 lakes impaired

Nutrient impaired lake (2020 draft list)

814 river miles impaired

Why important? Aquatic life nitrate toxicity

La

SĽ

m

Why important? Downstream algae blooms

Lake Pepin Need 35% P reduction*

Lake Winnipeg

Need 50% N & P reductions in Red River**

Gulf of Mexico

Need 45% N and P reductions to reduce hypoxic zone to 1/3 current size***

***from 1980-96 baseline

*from 2008-17 baseline

**from late 1990s baseline

Good reasons to care

Nutrient loss to our waters:

- Impacts human health/drinking water
- Lost nutrients to water = lost fertilizer value
- Costs to treat drinking water, replace wells, build onto water treatment plants
- Affects recreation and tourism in Minnesota and Canada
- Harms shell-fish industry in Gulf of Mexico

Minneopa Falls running green

Outlet of Cottonwood Lake

River conditions and trends

- 1. Why important to reduce nutrient losses?
- 2. Conditions and trends
- 3. Sources ag and urban important
- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

River condition, trends - phosphorus

River condition, trends - nitrate

Nutrient sources

- 1. Why important to reduce nutrient losses?
- 2. Conditions & trends
- 3. Sources urban and ag important
- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Statewide sources to rivers differ for N & P

Source: MPCA & UMN 2013

Source: MPCA et al., 2014

Sources and pathways vary by region

Nitrogen to rivers

Important to reduce Urban sources of N & P

Important to reduce **Cropland** N & P losses

Urban Septic_ Feedlot 2% Stormwater runoff 1% <1% Forests 7% Cropland Atmospheric groundwater 9% baseflow 30% Wastewater 9% Cropland runoff 5% **Cropland tile** drainage 37%

Nitrogen

Source: MPCA & UMN 2013

Source: MPCA et al., 2014

Progress and needs

- 1. Why important to reduce nutrient losses?
- 2. Conditions and trends
- 3. Sources urban and ag important
- 4. We've made progress, but there's more we need to do
- Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

BMPs adopted through governmental programs

BMPs Installed 2004-2018	BMP Count
Tillage/residue management	11,382
Designed erosion control & trapping	10,236
Nutrient management (cropland)	9,992
Septic System Improvements	7,874
Converting land to perennials	7,696
Open tile inlet & side inlet improvements	7,136
Stream banks, bluffs & ravines protected/restored	6,073
Buffers and filters - field edge	5,348
Add living cover to annual crops in fall/spring	4,508
Habitat & stream connectivity management	4,026
Pasture management	3,087
Drainage ditch modifications	2,715
Agricultural tile drainage water treatment/storage	1,184
Urban Stormwater Runoff Control	1,114
Changing rotations to less erosive crops	455
Feedlot runoff controls	173
Forestry Management	138
Wetland restoration/creation	104
In Lake Management	4
Other	51,878
Grand Total	135,123

www.pca.state.mn.us/water/healthier-watersheds

Agricultural progress

 \circ More than 500,000 acres certified, and growing

Wastewater nutrient discharges

2000-2018

Phosphorus

Mississippi River Basin = Lake Superior = Lake Winnipeg

Stormwater reductions

- Lawn fertilizer phosphorus restricted since 2004
 - Turf N and P fertilizer ~ 2% of all fertilizer used
- Urban stormwater runoff programs:
 - Thousands P lbs reduced
 - 2,000-2,500 construction projects per year

Afternoon breakout session

Minnesota Nutrient Reduction Strategy

- 1. Why important to reduce nutrient losses?
- 2. Conditions and trends
- 3. Sources ag and urban important
- 4. We've made progress, but there's more we need to do
- 5. Minnesota's nutrient reduction strategy addresses both urban and agricultural sources

Minnesota Nutrient Reduction Strategy

Afternoon breakout session

www.pca.state.mn.us/water/nutrient-reduction-strategy

How many new BMP acres to reach 2025 milestone?

Working together for Waverly Lake

Waverly Lake – impaired and today

Questions?

Dana Vanderbosch

