Proceedings from the 6th Annual Nutrient Management Conference

Do not reproduce or redistribute without written consent of the author(s)

Where do U of M Recs come from? - N calculator updates

DANIEL KAISER – SOIL FERTILITY SPECIALIST

BRAD CARLSON – EXTENSION EDUCATOR

RATE: THE DILEMMA

- Very difficult to know the correct rate until after the growing season
- Virtually impossible to see how much is being applied
- Rate can mask other bad practices
- Long-standing "anti-UofM rates" message
 - Yield based rates
- New technology

WHAT'S GOING ON OUT THERE?

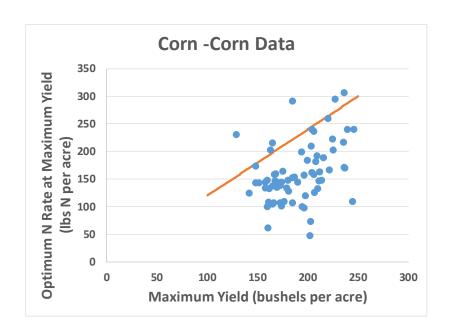
- 2012 NASS report
 - 71% of corn/soybeans in MN above 140 lb./A
 - 34% over 155 lb./A
 - 17% of corn/corn above 180 lb./A
- 2016,17, 18 Adult Farm Management Records (SE, SC, SW, WC MN)
- Fertilizer cost per acre (manure users excluded)
 - 20% most profitable farms \$138, \$107, \$108
 - 20% least profitable farms \$177, \$134, \$131
 - 28%, 25%, 21% difference
 - Seed 11%, 12%, 7%

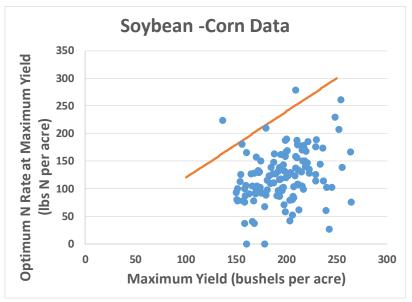
HISTORY LESSON – PRE-1974

- 1.2 X Yield (sum of credits) = rate
- Replaced in 1974 in SC and SE
- Kept as an option until 1982

ENTER YIELD GOAL (CHANGED TO EXPECTED YIELD IN 2000)

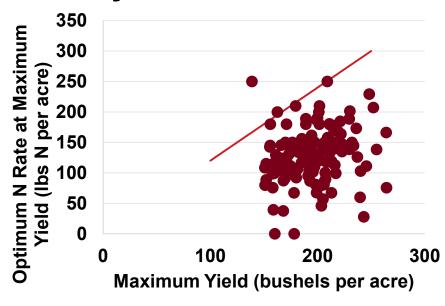
Table 20. Nitrogen recommendations for corn production for situations where the soil nitrate test is not used.

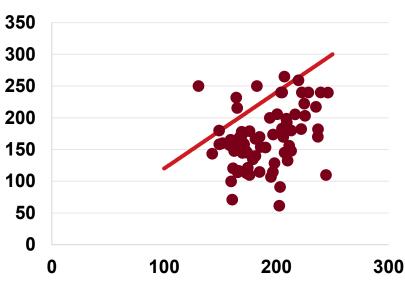

Crop Grown	Organic* Matter			Yiel	d Goal (bu./a	acre)					
Last Year	Level	70-90	91-110	111-130	131-150	151-170	171-190	191+			
				N to	apply (lb./ad	cre)					
alfalfa (4+ plants/ft²), nonharvested	low	0	0	0	0	30	50	70			
sweet clover											
	medium and high	0	0	0	0	0	20	40			
soybeans small grains,** alfalfa	low	20***	50***	80 ***	110	140	160	180			
(1 or less plants/ft²)	medium										
	and high	0	30	60	80	110	130	150			
edible beans, field peas, harvested sweet clover	low	40	70	100	130	160	180	200			
	medium and high	20	50	80	100	130	150	170			
Group 1 crops	low medium	0	15	45	75	105	125	145			
	and high	0	0	15	45	75	95	115			
Group 2 crops	low medium	60	90	120	150	180	200	220			
	and high	40	70	100	120	150	170	190			


MAXIMUM RETURN TO NITROGEN (MRTN) – 2005 TO PRESENT

- Multi-State effort to give consistency in how recommendations are made
 - Recommendations made by state
- Incorporates economics
- Acknowledges changes in crop N use
 - No need for soybean N credit
- Can be easily updated with recent data

MINNESOTA DOES NOT USE YIELD GOAL




N rate based on 1.2 X yield

YIELD GOAL BASIS DOESN'T WORK

Soybean -Corn Data

Corn -Corn Data

N rate based on 1.2 X yield

How to predict the optimum rate?

- Maximum Return to Nitrogen (MRTN)
 - University of Minnesota guidelines
 - Target the rate where the last \$ invested in N produces \$ increase in yield
- Yield goal (e.g. 1.2 lbs N/bu expected)
 - Doesn't work
- Modeling
 - Depends on good data

Right Rate

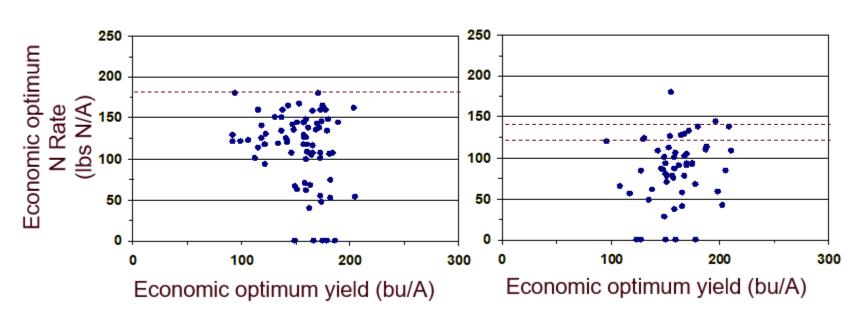
EONR - Economic Optimum Nitrogen Rate

- The actual optimum rate for a specific field and season
- Can be adjusted for price of N

You can't know the optimum rate at the time you need to make fertilizer decisions!

			Input state	rotation h	ere.	Input prices on input-results sheet, NOT here.									
			SC			N Cost:	0.40	\$/lb N							
						Corn Price:	4.00	\$/bu							
						Ratio:	0.100								
	_														
	Exai	mple of Data	in the	e Cor	n N r	ate D	ataba	ase							
		•													
															<u> </u>
		Sites	90-04	90-10	91-02	91-03	91-13	92-03	92-06	92-21	92-23	94-10	95-15	96-09	9
0		Max N Applied (lb N/acre)	150	150	150	150	180	180	150	120	120	120	120	120	
1		a	146.88	106.48	89.07	94.78	137.10	107.76	115.40	107.00	117.00	100.20	127.00	109.50	11
2		b	0.43488	1.15928	1.14452	0.85024	0.81170	0.80000	0.82600	0.67500	2.11360	0.63350	0.46670	1.31250	0.8
3		C	########	########	#########	########	#########	#########	########	75.0	########		. 04.4	########	###
4		Plateau N (lb N/acre)	100.7	150.0	145.6	142.7	125.7	145.5	88.4	75.6	39.4	80.0	91.1	100.0	1
5		Plateau Yield (bu/acre)	168.8	197.3	172.4	155.4	188.1	165.9	151.9	158.0	158.7	150.9	169.5	175.2	1
6 7		Calculation													
_		Optimum N (lb N/acre)	77.5	143.5	132.9	125.9	110.2	127.3	77.7	75.6	37.6	80.0	91.1	92.4	4
B 9			167.6	196.9	171.8	154.6	187.3	165.0	151.4	158.0	158.6	150.9	169.5	174.8	1
J		Optimum Yield (bu/acre)	107.0	130.3	17 1.0	134.0	107.3	100.0	101.4	100.0	100.0	150.9	103.5	174.0	'
0	lb N/acre	Calculation													
1	0	N Rate (lb N/acre)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2		Yield RTN (bu/acre)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3		Yield RTN (\$/acre)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4 5		N Cost (lb/acre)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5		N Cost (\$/acre)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(
6		Net RTN (\$/acre)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(
7		Yield (bu/acre)	146.9	106.5	89.1	94.8	137.1	107.8	115.4	107.0	117.0	100.2	127.0	109.5	1
8															
9	1	N Rate (lb N/acre)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
0		Yield RTN (bu/acre)	0.4	1.2	1.1	0.8	0.8	0.8	0.8	0.7	2.1	0.6	0.5	1.3	
1		Yield RTN (\$/acre)	1.7	4.6	4.6	3.4	3.2	3.2	3.3	2.7	8.3	2.5	1.9	5.2	
2		N Cost (lb/acre)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
3		N Cost (\$/acre)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	(
4		Net RTN (\$/acre)	1.33	4.22	4.16	2.99	2.83	2.79	2.89	2.30	7.95	2.13	1.47	4.82	1
5		Yield (bu/acre)	147.3	107.6	90.2	95.6	137.9	108.6	116.2	107.7	119.1	100.8	127.5	110.8	1
6															
7		N Rate (lb N/acre)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	-
8		Yield RTN (bu/acre)	0.9	2.3	2.3	1.7	1.6	1.6	1.6	1.3	4.1	1.3	0.9	2.6	-
9		Yield RTN (\$/acre)	3.4	9.2	9.1	6.8	6.4	6.4	6.5	5.4	16.5	5.1	3.7	10.4	-
)		N Cost (lb/acre)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	-
1		N Cost (\$/acre)	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	(
2		Net RTN (\$/acre)	2.64	8.42	8.29	5.95	5.64	5.56	5.73	4.60	15.68	4.27	2.93	9.60	(
3		Yield (bu/acre)	147.7	108.8	91.3	96.5	138.7	109.3	117.0	108.4	121.1	101.5	127.9	112.1	1
L	⊌ ∠∪	TO regente of the officeraty	OI IVIII II ICOC	na. An ngna											
				-											

EONR — ECONOMIC OPTIMUM N RATE



RISK MANAGEMENT

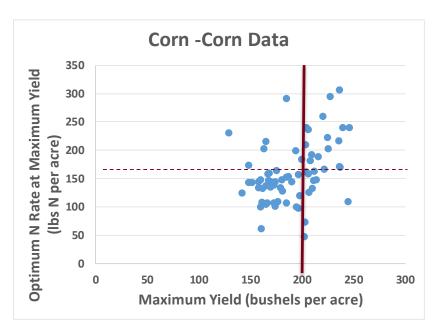
- How many years in 5?
- How many sites?

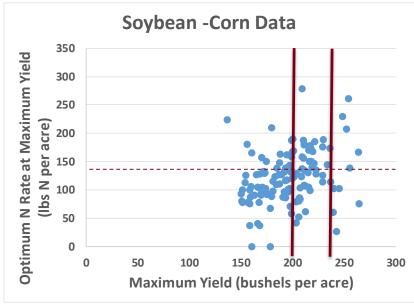
Corn after corn

Corn after soybeans

TO BE CLEAR

- MRTN is NOT the average!
- The recommendation considers most sites, NOT 50% above and 50% below


- The MRTN window is enough N for MOST sites
 - +- \$1 from MRTN


DIGGING INTO THE DATABASE

- C-C Sites: 200 bu/ac + Yield
 - Range 200-246 bu/ac
 - Optimal N
 - Mean/Median 183 lb N
- C-SB Sites: 200 bu/ac + Yield
 - Range 200-264 bu/ac
 - Optimal N
 - Mean/Median 135 lb N

RISK MANAGEMENT

Likelihood of needing a higher rate?

OPTIMAL YIELD VS N RATE

- Variability in optimal N rate is largely based on environmental factors
 - Soil productivity
 - Amount of rainfall
 - Rainfall timing (during year)
- How do you plan if you don't know what is going to happen the next year
- While optimal N rates have increased there is no direct evidence that the increase is a direct result of greater yield

EXCESS N IS LEFT BEHIND

Fernandez, 2014

40 lbs.!

HISTORICAL LOOK AT DATABASE

	<u>Cor</u>	<u>n/corn</u>	Corn/	orn/soybean		
N price/Crop value ratio	MRTN	Flexible range				
unitless		pounds N	per acre			
0.05	155	130 to 180	120	100 to 140		
0.10	140	120 to 165	110	90 to 125		
0.15	130	110 to 150	100	80 to 115		
0.20	120	100 to 140	85	uidelines for us		

2016

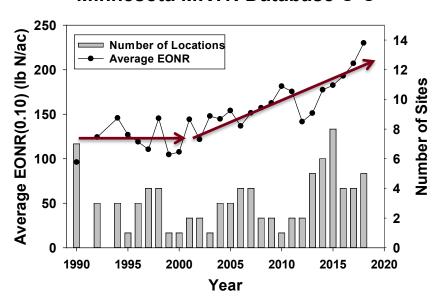
Guidelines for use of nitrogen fertilizer for corn grown following corn or soybean when supplemental irrigation is not used. (2016)

2005

	(Corn/Corn	Soybean/Corn				
N price/Crop value ratio	MRTN	Acceptable range MRTN		Acceptable range			
value lauo	lb N/acre						
0.05	180	160 to 200	140	125 to 160			
0.10	155	145 to 170	120	105 to 130			
0.15	150	140 to 155	105	95 to 115			
0.20	140	130 to 150	95	85 to 105			

Minnesota N Rate Guidelines

Guidelines for use of nitrogen fertilizer for corn grown following corn or soybean when supplemental irrigation is not used. (2019)


	(Corn/Corn	Soybean/Corn			
N price/Crop	MRTN	Acceptable range	MRTN	Acceptable range		
value ratio	lb N/acre					
0.05	195	180-210	150	135-165		
0.10	165	150-180	130	120-145		
0.15	150	140-160	115	105-125		
0.20	145	135-155	105	95-115		

http://cnrc.agron.iastate.edu/nRate.aspx

YEARLY EONR TRENDS

Minnesota MRTN Database C-C

Minnesota MRTN Database SB-C

What factors are resulting in an increase in the EONR? Will the EONR values continue to increase or level out?

Average MRTN across States

(0.10 N price : corn value ratio)

	Following Corn	Following Soybean
		N/acre
Illinois	204	166
Iowa	188	140
Minnesota	165	131
Wisconsin	162	121

Corn yield at the zero-N rate as a percent of yield at EONR (0.10 price ratio).

	Previous Crop			
State	Corn	Soybean		
		%		
Illinois	54	64		
Iowa	45	75		
Minnesota	60	76		
Wisconsin	75	80		

MN CORN PRODUCER TRIAL

- Flat rate 100 PP + 70 lb.N/ac SD.
- Split application, Encirca, R7, PSNT
 - 100 lbs N applied PP
- Replicated 5 times
- Each method used to make a whole field prescription

PRESCRIPTIONS

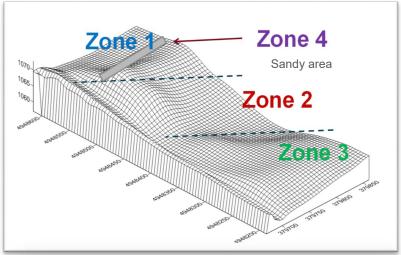
- Overall rate compared to BMP rate 2017
 - Encirca entirely below BMP
 - R7 mostly at or below BMP
 - PSNT 50% above BMP rate

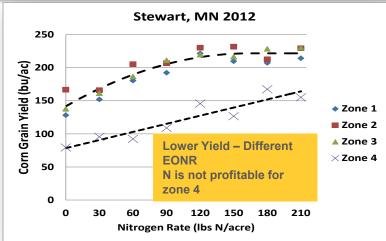
RESULTS

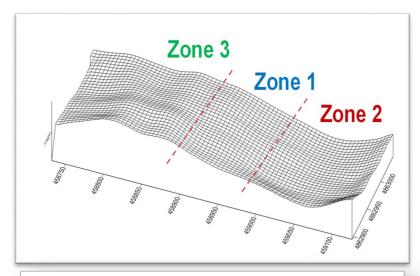
Treatment	Yield	Moisture	Avg. N Rate
Encirca	250.8	22.9	152
SD	247.8	22.9	169
PSNT	248.4	23.0	172
R7	254.1	22.8	164

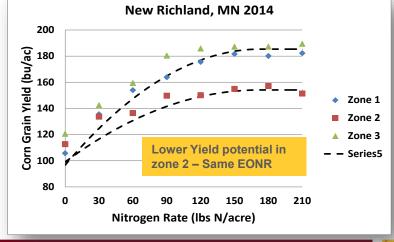
LSD - 13.3 bu./ac.

Of 5 reps Encirca best in 2, R7 best in 2, Flat Rate best in 1 All plots received 100 lbs N pre-plant


B Carlson - U of M


TAKE HOME MESSAGES - VRN

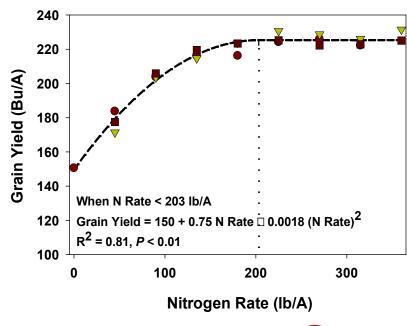

- Understanding N behavior is essential to both use and evaluation of VRN technology
- Early results indicate some VRN technology works (depending on your definition)
- Recommendations are likely to result in reduced inputs but not increased yield



Consider the following: 4.5 ac area

Rate, alone, is not a BMP

- Right Placement
- Right Rate
- Right Source
- Right Time



IN CONCLUSION

- Start with U of M recommendations and go from there
 - Rate is one thing
 - Getting source and timing right may be more important
- Avoid bad practices like fall urea
- Follow fertility practices that make economic sense and are research based
- If you deposited fertilizer into your soil bank account, now is the time to withdraw

Something to ponder

- Does increased
 mineralization of N from
 soil organic matter reduce
 the rate of N to apply or
 do years with greater
 mineralization set us up
 for higher yield potential
 - When is mineralized N important to the crop?

Daniel Kaiser dekaiser@umn.edu 612-624-3482

© 2018 Regents of the University of Minnesota. All rights reserved.

The University of Minnesota is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this PowerPoint is available in alternative formats upon request. Direct requests to 612-624-1222.